Документ подписан простой электронной подписью

Информация о владельце: МИНИСТЕРСТВО ТРАНСПОРТА РО ССИЙСКОЙ ФЕДЕРАЦИИ ФИО: Чирикова Лилия Иван Вана Должность: Директор филиала Должность: Директор филиала

ФЕДЕРАЛЬНОВ БОСУДАРОТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Уникальный просрамма в Ский ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ 750e77999bb0631a45cbf7b4a579c1095bcef032814fee91**6CaMT3Y44cO**)ad5

Филиал СамГУПС в г. Саратове

УТВЕРЖДАЮ

Директор филиала

СамГУПС вт. Саратове

/Чирикова Л.И./

Б1.В.02

Методы и принципы дефектоскопии

рабочая программа дисциплины (модуля)

Кафедра Инженерные, гуманитарные, естественнонаучные и

общепрофессиональные дисциплины

23.05.06 Строительство железных дорог, мостов и Специальность

транспортных тоннелей

инженер путей сообщения Квалификация

Форма обучения очная

Объем дисциплины **43ET** 4 3E

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

1.1. Цели освоения дисциплины (модуля)

Целью данной дисциплины является приобретение студентами знаний и навыков, необходимых для дальнейшего применения в профессиональной деятельности: по основным видам неразрушающего контроля рельсов, стрелочных переводов, пролетных строений мостов, сварных металлических конструкций, по современным средствам дефектоскопии и анализу результатов дефектоскопии, по выбору способов диагностики и технологии неразрушающего контроля объектов железнодорожного пути и сооружений.

1.2 Задачи освоения дисциплины (модуля)

Задачами данной дисциплины является освоение подходов и методов применения эффективных технологий неразрушающего контроля, и в частности научить студента: разрабатывать и внедрять прогрессивные методы организации работ по дефектоскопии, самостоятельно принимать решения в выборе методов и средств диагностики; производить расчеты и решать практические задачи на ЭВМ, пользоваться современными программными средствами по неразрушающему контролю.

1.3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

ПКС-1 Способен выполнять организацию и осуществление постоянного технического надзора за техническим состоянием пути и объектов путевого хозяйства железнодорожного транспорта

Индикатор

ПКС-1.1 Знает методы организации и осуществления технического надзора за техническим состоянием пути и объектов путевого хозяйства железнодорожного транспорта

Результаты обучения по дисциплине (модулю):

В результате освоения дисциплины обучающийся должен:

Знать:

Основные методы и принципы неразрушающего контроля, основные закономерности при осуществлении методов дефектоскопии.

Определять области применения методов неразрушающего контроля при дефектоскопии различных объектов.

Владеть:

Навыками применения дефектоскопных средств, использования результатов неразрушающего контроля, по разработке заключений по результатам дефектоскопии.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Код дисциплины	Наименование дисциплины	Коды формируемых компетенций					
	2.1 Осваиваемая дисциплина						
61.В.02 Методы и принципы дефектоскопии ОПК-4, ПКО-4							
	2.2 Предшествующие дисциплины	•					
61.0.09	Физика	ОПК-1					
	2.3 Осваиваемые параллельно дисциплин	ПЫ					
61.0.32	Инженерная экология	ОПК-1					
61.0.28	Железнодорожный путь	ОПК-4 ПКО-4					
	2.4 Последующие дисциплины	•					
61.0.35	Содержание мостов и тоннелей	ОПК-5, ПКО-5					
	3 ОБЪЕМ ЛИСПИПЛИНЫ (МОЛУЛЯ)					

3.1 Объем дисциплины (модуля)

43ET

3.2 Распределение академических часов по семестрам (для офо)/курсам(для зфо) и видам учебных занятий

Вид занятий		№ семестра (для офо) / курса (для зфо)																				
		1 2				3		4		5		6		7		8	9		10		Итого	
	УП	РПД	УП	РПД	УП	РПД	УП	РΠ	УП	РПД	УП	РΠ	УП	РПД	УП	РПД	УП	РΠ	УП	РΠ	УП	РПД
Контактная работа:									54,65	54,65											54,65	54,65
Лекции									18	18											18	18
Лабораторные									18	18											18	18
Практические									18	18											18	18
Консультации									0,65	0,65											0,65	0,65
Инд.работа																						

Контроль																						
Сам. работа									89,35	89,35											89,35	89,35
ИТОГО									144	144											144	144
3.3. Формы контро	ляив	иды с	амост	тро	ельн	ой ј	рабо	ты (буча	ющег	ося											
Форма контроля		естр (с	фо)/				Н	Горм	ы вр	емени	на	сам	остоя	тель	ную	рабо	ту о	буча	юще	гося		
	курс	(зфо)				Вид работы					Нормы времени, час											
]	Подготовка к лекциям					0,5 ч	аса н	а 1 ч	ac ay,	дитс	рных	заня	тий					
Экзамен					Подготовка к практическим/ лабораторным занятиям					1 час на 1 час аудиторных занятий												
Зачет с оценкой	5]	Тоді	ото	вка і	к зач	ету					9 часов (офо)								
Курсовой проект	-]	Зып	олно	ение	курс	сового	о прое	кта			72 часа								
Курсовая работа	-			I	Выполнение курсовой работы					36 часов												
Контрольная работа	-			I	Выполнение контрольной работы				9 часов													
РГР	5			I	Выполнение РГР							18 часов										

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

9 часов

Выполнение реферата/эссе

Реферат/эссе

Код занятия	Наименование разделов и тем	Вид занятия	Семестр / курс	К-во ак.часов	Компетенции	Литература
	Раздел 1 Общие вопросы дефектоскопии и неразрушающего контроля					
1.1	Классификация существующих видов дефектов металлоконструкций. Требования ГОСТ на выполнение неразрушающего вида контроля. Визуально-измерительный контроль конструкций, узлов и механизмов.	Лек	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
1.2	Визуально-измерительный контроль конструкций, узлов и механизмов.	Лаб	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
1.3	Классификация существующих видов дефектов изделий. Требования ГОСТ на выполнение неразрушающего контроля.	Пр	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
1.4	Классификация дефектов изделий и конструкций в разных отраслях промышленности. Применение визуальноизмерительного контроля в технике.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
	Раздел 2. Методы неразрушающего контроля, основанные на магнитном взаимодействии					
2.1	Магнитные методы неразрушающего контроля. Магнитопорошковый контроль.	Лек	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
2.2	Магнитоферрозондовый контроль (МФК). Методы и принципы МФК.	Лек	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
2.3	Магнитные методы неразрушающего контроля. Магнитопорошковый контроль стальных конструкций магнитным дефектоскопом.	Лаб	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
2.4	Магнитоферрозондовый контроль (МФК). Порядок проведения МФК феррозондовым дефектоскопом.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
2.5	Магнитные методы неразрушающего контроля. Магнитопорошковый контроль стальных конструкций. Расчет основных параметров в программе Elcut.	Пр	5	1	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
2.6	Магнитоферрозондовый контроль (МФК). Методы и принципы МФК. Расчет основных параметров в программе Elcut.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1

2.7	Магнитные методы неразрушающего контроля. Магнитопорошковый контроль стальных конструкций.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
2.8	Магнитоферрозондовый контроль (МФК). Методы и принципы МФК.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
	Раздел 3. Неразрушающий контроль на основе распространения вихревых токов				ПКС-1	
3.1	Вихретоковый метод дефектоскопии (ВТК). Методы, принципы, средства ВТК.	Лаб	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
3.2	Вихретоковый метод дефектоскопии (ВТК). Порядок проведения контроля вихретоковым дефектоскопом.	Пр	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
3.3	Вихретоковый метод дефектоскопии (ВТК). Расчет основных параметров ВТК в программе Elcut.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
3.4	Вихретоковый метод дефектоскопии (ВТК). Методы, принципы, средства ВТК.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
	Раздел 4. Акустические методы неразрушающего контроля				ПКС-1	
4.1	Акустические методы дефектоскопии. Ультразвуковой контроль.	Лек	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
4.2	Акустико-эмиссионный метод НК.	Лаб	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
4.3	Ультразвуковой контроль. Ультразвуковые дефектоскопы. Настройка параметров и проведение контроля.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
4.4	Акустико-эмиссионный метод НК. Средства и порядок проведения АЭК.	Пр	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
4.5	Ультразвуковой контроль. Расчет основных параметров УЗК.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
4.6	Акустико-эмиссионный метод НК. Расчет основных параметров АЭК.	Ср	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
4.7	Акустико-эмиссионный метод НК. Современные средства и технологии проведения АЭК.	Лек	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
	Раздел 5. Методы неразрушающего контроля с применением проникающих излучений					
5.1	Радиационные и радиоволновые методы дефектоскопии.	Лек.	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
5.2	Радиационные и радиоволновые методы дефектоскопии. Средства дефектоскопии и порядок проведения контроля.	Пр.	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
5.3	Радиационные и радиоволновые методы дефектоскопии. Расчет мощности излучения.	Лаб.	5	1	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
5.4	Радиационные и радиоволновые методы дефектоскопии. Современные средства и материалы для контроля.	Лаб	5	1	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
	Раздел 6. Методы контроля для исследования поверхностных дефектов				ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
6.1	Электрический и капиллярный методы дефектоскопии.	Лек	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
6.2	Электрический и капиллярный методы дефектоскопии. Порядок проведения контроля с помощью специальных средств НК.	Пр	5	1	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1

6.3	Электрический и капиллярный методы дефектоскопии. Расчет основных параметров в Elcut.	Cp.	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
6.4	Электрический и капиллярный методы дефектоскопии. Электрические дефектоскопы и проникающие жидкости.	Ср.	5	4	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
	Раздел 7. Методы неразрушающего					
	контроля, основанные на применении					
	инфракрасного излучения					
7.1	Теоретические основы тепловой метода неразрушающего контроля.					
7.2	Тепловой метод неразрушающего контроля. Порядок проведения и средства контроля.	Пр	5	1	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
7.3	Тепловой метод неразрушающего контроля. Расчет основных параметров в программе Elcut.	Пр	5	1	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
7.4	Тепловой метод неразрушающего контроля. Тепловизионная аппаратура.	Лаб	5	2	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
	Раздел 8. Подготовка к занятиям					
8.1	Подготовка к зачету.	Ср	5	10	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
8.2	Подготовка к лекциям.	Ср	5	5	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
8.3	Подготовка к практическим работам.	Ср	5	5	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
8.4	Подготовка к лабораторным занятиям.	Ср	5	5	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1
8.5	Выполнение расчетно-графической работы	Cp.	5	18,35	ПКС-1	Л1.1 –Л1.4, Л2.1, М1, Э1-Э5

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Основными этапами формирования компетенций в рамках дисциплины выступает последовательное изучение содержательно связанных между собой разделов (тем учебных занятий), которые отражены в разделе 4.

	Матрица оценки результатов обучения по дисциплине										
Код компетенц ии	Планируемые результаты обучения (показатели оценивания компетенций)		Оценочные средства/формы контроля								
		Опрос по теории	Тестовое задание	Отчет по лабораторн ой работе	Доклад	Разбор и анализ конкретных ситуаций	РГР	Зачет с оценкой			
	знает	+	+	+	+	+	+	+			
ПСК-1	умеет	+	+	+	+	+	+	+			
	владеет	+	+	+	+	+	+	+			

5.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ТЕКУЩЕМУ КОНТРОЛЮ (ОПРОС ПО ТЕОРИИ)

- «Отлично» (5 баллов) получают обучающиеся с правильным количеством ответов на задаваемые вопросы не менее 95% от общего объёма заданных вопросов.
- «Хорошо» (4 балла) получают обучающиеся с правильным количеством ответов на задаваемые вопросы не менее 75% от общего объёма заданных вопросов.
- «Удовлетворительно» (3 балла) получают обучающиеся с правильным количеством ответов на задаваемые вопросы не менее 50% от общего объёма заданных вопросов.
- «Неудовлетворительно» (0 баллов) получают обучающиеся с правильным количеством ответов на задаваемые вопросы менее 50% от общего объёма заданных вопросов.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ ТЕСТОВЫХ ЗАДАНИЙ

«**Отлично**» (5 баллов) – получают обучающиеся с правильным количеством ответов на тестовые вопросы – 100 - 90% от общего объёма заданных тестовых вопросов.

«Хорошо» (4 балла) – получают обучающиеся с правильным количеством ответов на тестовые вопросы – 89 – 70% от общего объёма заданных тестовых вопросов.

«Удовлетворительно» (3 балла) – получают обучающиеся с правильным количеством ответов на тестовые вопросы – 69 – 40% от общего объёма заданных тестовых вопросов.

«Неудовлетворительно» (0 баллов) - получают обучающиеся с правильным количеством ответов на тестовые вопросы – менее 39% от общего объёма заданных тестовых вопросов.

КРИТЕРИИ ФОРМИРОВАНИЯ ОПЕНОК ПО ЗАШИТЕ ЛАБОРАТОРНОЙ РАБОТЫ

«Зачтено» получают обучающиеся, выполнившие все физические измерения в соответствие с требованиями лабораторной работы, правильно выполнившие все необходимые расчеты по обработке результатов измерений в соответствие с требованиями лабораторной работы, оформившие отчет о выполнении лабораторной работы в соответствии с предъявляемыми требованиями, в котором представлены все результаты измерений, сделаны все необходимые расчеты без арифметических ошибок, сделаны обобщающие выводы, а также грамотно ответившие на 60% и более теоретических вопросов преподавателя по теме данной лабораторной работы.

«Не зачтено» получают обучающиеся, не выполнившие все физические измерения в соответствие с требованиями лабораторной работы, либо не выполнившие правильно все необходимые расчеты по обработке результатов измерений в соответствие с требованиями лабораторной работы, либо не оформившие отчет о выполнении лабораторной работы в соответствии с предъявляемыми требованиями, либо не ответившие на 60% и более теоретических вопросов преподавателя по теме данной лабораторной работы.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ПРЕДСТАВЛЕННОМУ ДОКЛАДУ

«Отлично» (5 баллов) – обучающийся показал глубокие знания материала по поставленным вопросам, грамотно, логично его излагает, структурировал и детализировал информацию, информация представлена в переработанном виде.

«Хорошо» (4 балла) – обучающийся твердо знает материал, грамотно его излагает, не допускает существенных неточностей в ответ на вопросы, представляет наглядный материал, помогающий слушателям запомнить основные пункты выступления.

«Удовлетворительно» (3 балла) – обучающийся имеет знания основного материала по поставленным вопросам, но не усвоил его деталей, допускает отдельные неточности.

«Неудовлетворительно» (0 баллов) — обучающийся допускает грубые ошибки в ответе на поставленные вопросы, демонстрирует отсутствие необходимой информации в презентации.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО РАЗБОРУ КОНКРЕТНЫХ СИТУАЦИЙ

«Отлично» (5 баллов) – студент рассматривает ситуацию на основе целостного подхода и причинно-следственных связей. Эффективно распознает ключевые проблемы и определяет возможные причины их возникновения.

«Хорошо» (4 балла) – студент демонстрирует высокую потребность в достижении успеха. Определяет главную цель и подцели, но не умеет расставлять приоритеты.

«Удовлетворительно» (3 балла) — студент находит связи между данными, но не способен обобщать разнородную информацию и на её основе предлагать решения поставленных задач.

«Неудовлетворительно» (0 баллов) – студент не может установить для себя и других направление и порядок действий, необходимые для достижения цели.

КРИТЕРИИ ФОРМИРОВАНИЯ ОЦЕНОК ПО ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНЫХ КОНТРОЛЬНЫХ РАБОТ

«Отлично» (5 баллов) – ставится за работу, выполненную полностью без ошибок и недочетов.

«Хорошо» (4 балла) – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

«Удовлетворительно» (3 балла) — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и двух недочетов.

«Неудовлетворительно» (0 баллов) – ставится за работу, если число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Виды ошибок:

- грубые ошибки: незнание основных понятий, правил, формул; незнание приемов решения физических задач; ошибки, показывающие неправильное понимание условия предложенного задания.
 - негрубые ошибки: неточности формулировок, определений; нерациональный выбор хода решения.
- недочеты: нерациональные приемы решения задач; арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата; отдельные погрешности в формулировке выводов по результатам решения; небрежное выполнение задания.

Критерии формирования оценок по зачету с оценкой

«Отлично» (5 баллов) – высокий уровень формирования компетенции – студент демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

«Хорошо» (4 балла) – продвинутый уровень формирования компетенции – студент демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности

изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

«Удовлетворительно» (3 балла) — базовый уровень формирования компетенции — студент демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

«Неудовлетворительно» (0 баллов) - компетенция не сформирована — выставляется в том случае, когда студент демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

5.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций Вопросы к зачету с оценкой

Основные виды методов неразрушающего контроля (МНК)

- 2. Необходимость применения МНК.
- 3. Каковы требования, предъявляемые к МНК
- 4. Основные задачи системы контроля качества продукции
- 5. Основные критерии эффективности МНК.
- 6. Система классов чувствительности и групп качества.
- 7. Основные недостатки МНК.
- 8. Что такое дефект. Назовите основные виды дефектов.
- 9. Причины возникновения дефектов. Качественные характеристики дефектов
- 10. Основные дефекты типа нарушения сплошности, подповерхностные дефекты, объемные дефекты. Применяемые МНК.
- 11. Каким образом материал изделия определяет возможный вид НМК.
- 12. Дефекты типа «волосовины», «свищи», «раковины».
- 13. Трещины в материалах. Основные причины возникновения. Применяемые МНК.
- 14. Дефекты сварных и клеевых соединений. Применяемые МНК.
- 15. Какие виды дефектов можно обнаружить с помощью УЗК.
- 16. Параметры ультразвуковых волн. Основные закона распространения УЗВ в материалах.
- 17. Устройства для возбуждения УЗ колебаний. Их виды и конструкции.
- 18. Способы обнаружения дефектов при УЗК.
- 19. Особенности применения эхо-метода и ЗТМ.
- 20. Средства для проведения УЗК. Параметры методов УЗК.
- 21. Специальные образцы для проведения УЗК. Настройка ультразвукового дефектоскопа.
- 22. Основные преимущества и недостатки методов ВОК.
- 23. Видимость объекта. Острота зрения. Разрешающая способность глаза.
- 24. Классификация приборов ВОК.
- 25. Основные параметры дефектов, обнаруживаемых невооруженным глазом.
- 26. Основные элементы оптико-электронных систем контроля.
- 27. От каких факторов зависит достоверность ВОК.
- 28. Принцип лазерного дефектоскопа.
- 29. Область применения голографической интерферометрии.
- 30. Методы КНК. Какие дефекты можно выявлять с помощью КНК. Верхний и нижний порог чувствительности.
- 31. Основные этапы метода КНК. Достоинства и недостатки.
- 32. Какие факторы влияют на размер индикаторного следа.
- 33. Требования к проникающей жидкости и проявителю. Основные приборы и приспособления КНК.
- 34. Область применения МНК. Исследуемые материалы и виды дефектов.
- 35. Основные способы и приемы намагничивания.
- 36. Полюсное и циркулярное намагничивание.
- 37. Предпочтение способов намагничивания в зависимости от вида изделия и дефектов.
- 38. Комбинированное намагничивание. Глубина проникновения магнитного поля.
- 39. Основные операции при проведении МНК.
- 40. Виды регистрации дефектов при МНК.
- 41. Особенности магнитопорошковой дефектоскопии.
- 42. Принцип работы феррозонда.
- 43. От каких факторов зависит чувствительность магнитопорошкового метода.
- 44. Область применения ВТК.
- 45. Как изменяется плотность вихревых токов.
- 46. Виды датчиков ВТК.
- 47. Что такое годограф.
- 48. Что собой представляет система радиационного контроля.
- 49. Классификация методов РНК. Способы регистрации радиационных изображений.
- 50. Виды источников ИИ. Тормозное излучение.
- 51. Способы получения рентгеновского и гамма-излучения.
- 52. Принцип работы бетатрона, микротрона.

- 53. Конструкции гамма-дефектоскопов.
- 54. Какие факторы влияют на чувствительность при радиографии.
- 55. Основные типы и характеристики рентгеновских пленок. Назначение экранов.
- 56. Основные схемы и характеристики радиоскопического контроля.
- 57. Принцип действия счетчика Гейгера-Мюллера.
- 58. Основные преимущества и недостатки способов регистрации при РНК.
- 59. Тепловые методы неразрушающего контроля
- 60. Средства для осуществления тепловизионного контроля.
- 61. Анализ результатов ТК.

Типовое задание по РГР: «Рельсовая дефектоскопия»

5.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Описание процедуры оценивания по текущему контролю «Опрос по теории / Тестирование».

Контроль выполненной самостоятельной работы осуществляется индивидуально, на занятиях, при тестировании; при этом оценивается уровень освоения обучающегося учебным материалом, умение обучающегося использовать теоретические знания при выполнении практических задач, обоснованность и четкость изложения ответа.

Тестирование по дисциплине проводится с использованием ресурсов электронной образовательной среды «Moodle» (режим доступа: http://do.samgups.ru/moodle/). Количество тестовых заданий и время задается системой. Во время проведения тестирования обучающиеся могут пользоваться программой дисциплины, справочной литературой, калькулятором.

Результат каждого обучающегося оценивается в соответствии с универсальной шкалой, приведенной в пункте 5.2.

Описание процедуры оценивания «Защита лабораторной работы».

Оценивание итогов лабораторной работы проводится преподавателем, ведущим лабораторные работы.

По результатам проверки отчета по лабораторной работе обучающийся допускается к его защите при условии соблюдения перечисленных условий:

- выполнены все задания;
- отсутствуют ошибки;
- оформлено в соответствии с требованиями.

В том случае, если содержание отчета не отвечает предъявляемым требованиям, то он возвращается автору на доработку. Обучающийся должен переделать отчет с учетом замечаний. Если сомнения вызывают отдельные аспекты отчета, то в этом случае они рассматриваются во время устной защиты.

Защита отчета по лабораторной работе представляет собой устный публичный отчет обучающегося о результатах выполнения, ответы на вопросы преподавателя.

Ответ обучающегося оценивается преподавателем в соответствии с критериями, описанными в пункте 5.2.

Описание процедуры оценивания «Представленный доклад / Анализ и разбор конкретной ситуации».

Контроль выполненной самостоятельной работы осуществляется индивидуально, на практических занятиях. При этом оценивается соответствие содержания темы работы, глубина и полнота раскрытия темы, логичность, связанность, доказательность.

Ответ обучающегося оценивается преподавателем в соответствии с критериями, описанными в пункте 5.2.

Описание процедуры оценивания «Защита РГР». Оценивание проводится ведущим преподавателем по данной учебной дисциплине. По результатам проверки контрольной работы обучающийся допускается к ее защите при условии соблюдения перечисленных условий:

- выполнены все задания;
- сделаны выводы;
- отсутствуют ошибки;
- оформлено в соответствии с требованиями.

В том случае, если работа не отвечает предъявляемым требованиям, то она возвращается автору на доработку. Обучающийся должен переделать работу с учетом замечаний и предоставить для проверки вариант с результатами работы над ошибками. Если сомнения вызывают отдельные аспекты контрольной работы, то в этом случае они рассматриваются во время устной защиты работы.

Защита контрольной работы представляет собой устный публичный отчет обучающегося о результатах выполнения, ответы на вопросы преподавателя. Ответ обучающегося оценивается преподавателем в соответствии с критериями, описанными в пункте 5.2.

Описание процедуры оценивания «Зачет».

Зачет может проводиться как в форме устного или письменного ответа с последующем собеседованием на вопросы билета, так и в форме тестирования.

При проведении зачет в форме устного ответа на вопросы билета обучающемуся предоставляется 20 минут на подготовку. Опрос обучающегося по билету не должен превышать 0,25 часа. Ответ обучающегося оценивается в соответствии с критериями, описанными в пункте 5.2.

Во время проведения зачета обучающиеся могут пользоваться программой дисциплины, справочной литературой, калькулятором. Результат каждого обучающегося оценивается в соответствии с универсальной шкалой, приведенной в пункте 5.2.

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

6.1 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

	*	6.1.1. Основная литература		
	Авторы, составители	Заглавие	Издательство, год	Кол-во
Л1.1	М-во трансп. РФ, ФАЖТ, СамГУПС, Каф. Вагоны	Феррозондовый неразрушающий контроль деталей вагонов. Ч. 3: метод. указ. к вып. лаб. работы по дисц. «Техническая диагностика вагонов» для студ. спец. 190302 «Вагоны» очн. и заоч. форм обуч.	Самара: СамГУПС, 2008	ЭБС «Лань»
Л1.2	Ильин В.А., Кожевников Г.И.	Дефектоскопия деталей подвижного состава железных дорог и метрополитенов	М.: Транспорт, 1983	БС «УМЦ ЖДТ»
Л1.3	Канаевский И.Н., Сальникова Е.Н.	Неразрушающие методы контроля: учеб. для вузов;	Владивосток: Издательство ДВГТУ, 2007	БС «УМЦ ЖДТ»
Л1.4	Марков А.А., Шпагин Д.А.	Ультразвуковая дефектоскопия: Учебное пособие	ИКЦ "Академика",2013	
		6.1.2 Дополнительная литература		
	Авторы, составители	Заглавие	Издательство, год	Кол-во
Л2.1	Клюев В.В., Соснин Ф.Р., Ковалев А.В	Неразрушающий контроль и диагностика: справочник	М.: Машиностроение, , 2003	2
Л2.2	Крестин, Е.А.	Основы гидравлики и теплотехники : учебное пособие [Электронный ресурс]	Москва : КноРус, 2018. — 343 с	ЭБС «Лань»
		6.2 Методические разработки		
	Авторы, составители	Заглавие	Издательство, год	Кол-во
M 1	В.Г. Рахчеев С.А. Галанский Г.Р. Маеров И.С. Максимов	Рельсовая дефектоскопия	СамГУПС, 2016	52

6.3. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

	Наименование ресурса	Эл. адрес
Э1	Научная электронная библиотека	http://elibrary.ru/defaultx.asp
Э2	Информационная система "Единое окно доступа к образовательным ресурсам"	http://window.edu.ru
Э3	Сайт "Неразрушающий Контроль оборудование и техника для дефектоскопии	http://www.ncontrol.ru
Э4	Сайт "о неразрушающем контроле и промышленной безопасности"	http://специалистнк.рф
Э5	Сервер неразрушающего контроля в России	http://www.ndt.ru

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для освоения дисциплины обучающемуся необходимо: систематически посещать лекционные занятия; активно участвовать в обсуждении предложенных вопросов и выполнять практические и лабораторные задания, успешно пройти все формы текущего контроля.

Для теоретического и практического усвоения дисциплины большое значение имеет самостоятельная работа обучающихся, которая может осуществляться как индивидуально, так и под руководством обучающего. Данная работа предполагает самостоятельное изучение обучающимся отдельных тем (см. п.4), дополнительную подготовку к каждому лекционному и практическому занятию.

Самостоятельная работа обучающихся является важной формой образовательного процесса. Она реализуется вне рамок расписания, а также в библиотеке, дома, при выполнении учебных и индивидуальных задач.

Цель самостоятельной работы - научить обучающегося осмысленно и самостоятельно работать сначала с учебным материалом, затем с научной информацией, заложить основы самоорганизации и самовоспитания с тем, чтобы повысить уровень освоения компетенций, а также привить умение в дальнейшем непрерывно повышать свою квалификацию.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8.1 Перечень программного обеспечения

К.Ю.Лукьянов

Размещение учебных материалов в разделе «Методы и принципы дефектоскопии» системы обучения Moodle: http://do.samgups.ru/moodle/

8.2 Перечень информационных справочных систем

8.2.1	Научная электронная библиотека eLIBRARY.RU. Режим доступа: http://elibrary.ru
8.2.2	«Лань» - электронно-библиотечная система. Режим доступа: http://e.lanbook.com/
8.2.3	Информационная система «Единое окно доступа к образовательным ресурсам». Режим доступа: http://window.edu.ru
8.2.5	ЭБ «УМЦ ЖДТ» режим доступа: https://umczdt.ru/books/

9. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Лекционная аудитория (50 и более посадочных мест) и аудитории для проведения практических и лабораторных занятий (25 и более посадочных мест) оборудованные учебной мебелью. Неограниченный доступ к электронно-библиотечным системам (через ресурсы библиотеки СамГУПС) и к информационно телекоммуникационной сети «Интернет» в рамках самостоятельной работы обучающегося.

Лекционные, практические и лабораторные работы проводятся в соответствии с расписанием занятий.