Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Чирикова Лилия Ивановна

Должность: Директор филиала

Дата подписания: 14.04.2021 16:13:09 Уникальный программный ключ:

750e77999bb0631a45cbf7b4a579c1095bcef032814fee919138f73a4ce0cad5

Приложение № 9.4.24

к ППССЗ по специальности 08.02.10 Строительство железных дорог, путь и путевое хозяйство

КОМПЛЕКТ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ МАТЕРИАЛОВ

ОП.05 СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Содержание

1 Пояснительная записка	4
2 Результаты освоения дисциплины, подлежащие проверке	6
3 Теоретические задания (Т3)	12
4 Практические задания (ПЗ)	44
5 Пакет преподавателя.	47

1. Пояснительная записка

Контрольно-измерительные материалы (далее КИМ) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины ОП.05. Строительные материалы и изделия.

На освоение программы учебной дисциплины ОП.05. Строительные материалы и изделия отведено

- максимальной учебной нагрузки на студента 132 часа, в том числе:
- обязательной аудиторной учебной нагрузки студента 88 часов;
- самостоятельной работы студента 44 часов.

КИМ включают в себя контрольные материалы для проведения оперативного (поурочного), рубежного (по разделам и укрупнённым темам) и итогового контроля по завершению изучения дисциплины.

КИМ предусматривает следующие виды контроля:

- устный опрос;
- письменные работы;
- контроль с помощью технических средств и информационных систем.

КИМ предполагают следующие формы контроля:

- собеседование,
- тестирование,
- контрольные работы,
- лабораторная, практическая работа,
- -дифференцированный зачет.

Итоговой формой контроля по завершению изучения дисциплины ОП.05. Строительные материалы и изделия, согласно учебного плана, является дифференцированный зачет в 4-м семестре (на базе основного общего образования). КИМ разработаны на основании:

- ФГОС по специальности 08.02.10 Строительство железных дорог, путь и путевое хозяйство (5.1) базовой подготовки (приказ ФГОС от 13.08.2014 №1002);
- учебного плана 08.02.10 Строительство железных дорог, путь и путевое хозяйство;
- рабочей программы по дисциплине OП.05. Строительные материалы и изделия;
- Положения о текущей и промежуточной аттестации студентов СТЖТ филиала СамГУПС, обучающихся по ОПОП СПО на основе ФГОС СПО.

В результате освоения учебной дисциплины обучающийся должен уметь:

- У1– определять вид и качество материалов и изделий;
- У2— производить технически и экономически обоснованный выбор строительных материалов и изделий для конкретных условий использования.

В результате освоения учебной дисциплины обучающийся должен знать:

- 31- основные свойства строительных материалов;
- 32- методы измерения параметров и свойств строительных материалов;
- 33- области применения материалов.

2. Результаты освоения дисциплины, подлежащие проверке

Результаты обучения (освоенные умения, усвоенные	Номера разделог Основные показатели оценки (тем) по рабочей		Объём времени, отведённого на изучение (максимальная нагрузка)		Вид и № задания для оперативного.
знания) / Компетенции	` negy/il-tator	программе	часы	%	рубежного и итогового контроля
Уметь: У1– определять вид и качество материалов и изделий; Знать: 31– основные свойства строительных материалов. Компетенции: 32– методы измерения параметров и свойств строительных материалов; ОК 1-9 ПК 2.1,2.2	-определяет физические, химические, механические и технологические свойства металлов; -выполняет измерение твердости и ударной вязкости стали; -различает материалы по внешнему виду; - производит технико- экономические сравнения различных вариантов применяемых материаловопределяет основные древесные породы и ассортимент древесных материалов, применяемых в путевом хозяйстве; пути экономии, меры безопасности при работе с древесными материалами; -определяет свойства древесины, пороки и болезни, виды грибков; предохранять древесину от гниения и возгоранияразличает виды естественных каменных материалов,	T1.1, 1.2, 2.1, 2.2;	24		Т3: 1.1-2.2; П3: ЛР-1, ЛР-2.

	используемых в путевом хозяйстве, требования к ним; -производит качественную оценку горной породы с точки зрения пригодности для производства путевых работ.				
Уметь: У2— производить технически и экономически обоснованный выбор строительных материалов и изделий для конкретных условий использования; Знать: 33— области применения материалов. ОК 1-9 ПК 3.1,3.2	-характеризует классификацию, основные свойства и технологию производства различных керамических изделий, меры безопасности при работе с ними; -исследует качественные параметры и свойства кирпича и других изделийхарактеризует классификацию, свойства, технологию производства стеклянных и плавленых изделий; -определяет вид листового стекла и изделий из негоопределяет критические точки стали и чугуна по диаграмме «железо-углерод», строит кривую охлаждениявыполняет расшифровку марок сталей и чугунов, латуней и бронз; -составляет график термической обработки стали; -характеризует классификацию,	T3.1-6.6	100	80%	Т3: 3.1-6.6; П3: ЛР-3-ЛР-15.

получение и основные свойства водушных вжущих материалов, правила приемки, транспортировки и хранения, меры безопасности при работе с ними; - определяет свойства минеральных воздушных вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов характеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, правилы правилы и спользовать их качественные параметры при подборе растворов и бетонов характеризует классификацию бетонов, состав бетона; свойства и область применения язжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; - производит качественную оценку крупного и мелкого заполнителя, расчет и подбор состава бетона.			1
правила приемки, транспортировки и хранения, меры безопасности при работе с ними; -определяет свойства минеральных воздушных вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов. -карактеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути окономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов. -характеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; - производит качественную оценку крупното и мелкого заполнителя,	получение и основные свойства		
транспортировки и хранения, меры безопасности при работе с ними; - определяет свойства минеральных воздушных вяжущих материалов, рациональны использовать их качественные параметры при подборе растворов и бетонов. - характеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов. - характеризует классификацию бетонов, состав бетона гидравличения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; - производит качественную оценку крупного и мелкого заполнителя,	воздушных вяжущих материалов,		
меры безопасности при работе с ними; -определяет свойства минеральных воздушных вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов. -характеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов. -характеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	правила приемки,		
ними; - определяет свойства минеральных воздушных вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов характеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов характеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; - производит качественную оценку крупного и мелкого заполнителя,			
-определяет свойства минеральных воздушных вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов. -характеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; - производит качественную оценку крупного и мелкого заполнителя,	меры безопасности при работе с		
воздушных вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути зономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами;производит качественную оценку крупного и мелкого заполнителя,			
рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; - производит качественную оценку крупного и мелкого заполнителя,	-определяет свойства минеральных		
качественные параметры при подборе растворов и бетоновхарактеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	воздушных вяжущих материалов,		
подборе растворов и бетонов. характеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами;производит качественную оценку крупного и мелкого заполнителя,	рационально использовать их		
-характеризует классификацию, получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона, свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	качественные параметры при		
получение и основные свойства гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; - производит качественную оценку крупного и мелкого заполнителя,	подборе растворов и бетонов.		
гидравлических вяжущих материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,			
материалов, правила приемки, транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	получение и основные свойства		
транспортировки и хранения, пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетонов характеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	гидравлических вяжущих		
пути экономии, меры безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	материалов, правила приемки,		
безопасности при работе с ними; - определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	транспортировки и хранения,		
- определяет свойства гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,			
гидравлических вяжущих материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	безопасности при работе с ними;		
материалов, рационально использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	- определяет свойства		
использовать их качественные параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	гидравлических вяжущих		
параметры при подборе растворов и бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	материалов, рационально		
бетоновхарактеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	использовать их качественные		
-характеризует классификацию бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	параметры при подборе растворов и		
бетонов, состав бетона; свойства и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	бетонов.		
и область применения тяжелых бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,			
бетонов в путевом хозяйстве, меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	бетонов, состав бетона; свойства		
меры безопасности при работе с бетонами; -производит качественную оценку крупного и мелкого заполнителя,	и область применения тяжелых		
бетонами; -производит качественную оценку крупного и мелкого заполнителя,			
-производит качественную оценку крупного и мелкого заполнителя,	меры безопасности при работе с		
крупного и мелкого заполнителя,	бетонами;		
	-производит качественную оценку		
расчет и подбор состава бетона.			
	расчет и подбор состава бетона.		

ſ I			
	-понимает основные понятия о		
	легких бетонах, виды, свойства и		
	область применения;		
	-определяет структуру, состав		
	легких бетонов.		
	-характеризует классификацию		
	растворов, состав, свойства и		
	область применения;		
	-определяет свойства растворных		
	смесей, производить		
	качественную оценку		
	составляющих, расчет и подбор		
	состава раствора.		
	-характеризует общие сведения о		
	железобетоне, принципы		
	армирования, преимущество		
	сборного железобетона перед		
	монолитным, номенклатуру		
	железобетонных деталей и		
	конструкций, применяемых в		
	путевом хозяйстве; правила		
	складирования и транспортировки,		
	безопасные методы работы с		
	железобетонными конструкциями;		
	-определяет виды безобжиговых		
	материалов, область их		
	применения;		
	использует различные виды		
	безобжиговых материалов в		
	железнодорожном строительстве.		
	-определяет классификацию		
	теплоизоляционных материалов,		
	требования к ним, область		

T		 ,	
при	енения, безопасные методы		
I =	ты с ними;		
I -	изводит технико-		
I -	омическое сравнение и		
раці	ональный выбор		
тепл	оизоляционных материалов.		
-опр	еделяет виды органических		
вяж	ицих материалов; их		
Свої	ства, правила приемки и		
xpai	ения, меры безопасности при		
	те с ними;		
-про	изводит рациональный выбор		
opra	нических вяжущих		
мат	риалов и изделий на их		
ОСН	Be.		
-xap	актеризует общие сведения о		
	мерах; классификацию,		
COCT	ав, свойства и применение		
	тмасс, меры безопасности		
l =	работе с ними;		
-про	изводит рациональный выбор		
	тмасс.		
- вы	бирает виды и область		
при	иенения лакокрасочных и		
	щих материалов;		
	изводит рациональный выбор		
l	очных и клеевых составов.		
	бирает состав, виды и		
	ства смазочных материалов,		
безо	пасные методы работы с		
ним	1 ;		
<u> </u>	определяет качество		
изоля	ционного материала		

	l
-понимает назначение и	
классификацию	
электроизоляционных материалов,	
их свойства и область применения;	
принцип работы передач;	
-характеризует простые	
полупроводники, бинарные	
соединения;	
-характеризует проводниковые	
материалы с высокой	
проводимостью, материалы с	
большим удельным	
сопротивлением;	
- выбирает необходимый	
материал, подбирать нужный тип	
проводов и кабелей, применять	
знания при изучении	
специальных дисциплин и на	
производственной практике.	
-характеризует магнитно-мягкие,	
магнитно-твердые материалы, их	
маркировку и область	
применения;	

3. Теоретические задания (Т3)

3.1 Текст заданий:

Тема 1.1 - 1.2 Классификация и требования к строительным материалам. Строение и свойства строительных материалов.

Вариант 1

1. Органические вещества представляют собой:

- 1) соединение углерода с другими элементами (преимущественно водородом, кислородом и азотом).
- 2) соединения уже окисленных химических элементов в основном оксидов кремния и алюминия с оксидами металлов
- 3) соединения состоящие из карбоната кальция CaCO3.
- 4) тонкодисперсные порошки, активной частью которых является оксид магния

2. Неорганические вещества представляют собой:

- 1) соединение углерода с другими элементами (преимущественно водородом, кислородом и азотом).
- 2) соединения уже окисленных химических элементов в основном оксидов кремния и алюминия с оксидами металлов.
- 3) соединения состоящие из карбоната кальция CaCO3.
- 4) тонкодисперсные порошки, активной частью которых является оксид магния.

3. Кристаллическими называют тела:

- 1) в которых только ближайшие друг к другу атомы находятся в упорядоченном расположении, дальний же порядок отсутствует.
- 2) которые имеют зернистое строение с пластинчатыми включениями углерода.
- 3) в которых атомы расположены в правильном геометрическом порядке.
- 4) в которых атомы расположены хаотично.

4. Поры – это:

- 1) воздушные ячейки в материале размером от одного до несколько сантиметров.
- 2) воздушные ячейки размером 0,16-5 мм.
- 3) воздушные ячейки размером до 1м.
- 4) воздушные ячейки в материале размером от долей микрона до сантиметра.

5. Истинная плотность материала рассчитывается по формуле:

- 1) $\rho=m/V$ тв, где m- масса материала, Vтв объем твердого вещества материала.
- 2) $\rho = V т в / m$, где m- масса материала, V тв объем твердого вещества материала.
- 3) $\rho=m$ / Vест, где m- масса материала, Vест- объем материала в естественном состоянии.
- 4) 4) ρ =[(Vест-Vтв / Vест)]*100 %, где Vест- объем материала в естественном состоянии, Vтв- объем твердого вещества материала.

6. Средняя плотность материала рассчитывается по формуле:

- 1) $\rho=m/V$ тв, где m- масса материала, Vтв объем твердого вещества материала.
- 2) ρ= Vтв / m , где m- масса материала, Vтв объем твердого вещества материала.
- 3) $\rho=m$ / Vест, где m- масса материала, Vест- объем материала в естественном состоянии.
- 4) 4) ρ =[(Vect-Vtв / Vect)]*100 %, где Vect- объем материала в естественном состоянии, Vtв- объем твердого вещества материала.

7. Пористость материала определяется по формуле:

- 1) $\Pi = [m_{ecr} m_{cyx}/m_{cyx}] * 100$ %, где m_{ecr} масса материала в естественном состоянии, m_{cyx} масса материала в сухом состоянии.
- 2) Π =[(Vест-Vтв / Vест)]*100 %, где Vест- объем материала в естественном состоянии, Vтв-объем твердого вещества материала.
- 3) П=[$(\rho_{cp}-\rho_{ист})/\rho_{ист}$]*100 %, где $\rho_{ист}$ -истинная плотность материала, ρ_{cp} средняя плотность материала.
- Γ) П=[m_{cyx} - m_{ecr} / m_{ecr}]*100 %, где m_{ecr} масса материала в естественном состоянии, m_{cyx} масса материала в сухом состоянии.

8. С увеличением пористости средняя плотность материала:

- 1) увеличивается.
- 2) остается постоянной.
- 3) сначала увеличивается, а потом уменьшается.
- 4) уменьшается.

9. Влажность материала определяется по формуле:

- 1) W=[mect-mcyx/mcyx]*100; где mect- масса материала в естественном влажном состоянии, mcyx- масса материала, высушенного до постоянной массы.
- 2) W вес=[mвод-mcyx/mcyx]*100; где mвод-масса материала в насыщенном водой состоянии, mcyx-масса сухого материала.
- 3) W об=[mвод-mcyx/vcyx]*100; где mвод- масса материала в насыщенном водой состоянии, vcyx- объем материала в сухом состоянии.
- 4) W =[mcyx-mecт/mcyx]*100; где mecт- масса материала в естественно влажном состоянии, mcyx- масса материала, высушенного до постоянной массы.

10. Весовое водопоглощение определяется по формуле:

- A) W=[mecт-mcyx/mcyx]*100; где mecт- масса материала в естественном влажном состоянии, mcyx- масса материала, высушенного до постоянной массы.
- Б) W вес=[mвод-mcyx/mcyx]*100; где mвод-масса материала в насыщенном водой состоянии, mcyx-масса сухого материала.
- В) W об=[mвод-mcyx/vcyx]*100 ; где mвод- масса материала в насыщенном водой состоянии, vcyx- объем материала в сухом состоянии.
- Γ) W =[mcyx-mect/mcyx]*100; где mect- масса материала в естественно влажном состоянии, mcyx-масса материала, высушенного до постоянной массы.

11. Объемное водопоглащение определяется по формуле:

- A) W=[mect-mcyx/mcyx]*100; где mect- масса материала в естественном влажном состоянии, mcyx- масса материала, высушенного до постоянной массы.
- Б) W вес=[mвод-mcyx/mcyx]*100; где mвод-масса материала в насыщенном водой состоянии, mcyx-масса сухого материала.
- В) W об=[mвод-mcyx/vcyx]*100; где mвод- масса материала в насыщенном водой состоянии, vcyx- объем материала в сухом состоянии.
- Γ) W =[mcyx-mect/mcyx]*100; где mect- масса материала в естественно влажном состоянии, mcyx-масса материала, высушенного до постоянной массы.

12. Гигроскопичность -это:

- А) способность материала сопротивляться деформации в поверхностном слое.
- Б) содержание влаги в материале в данный момент, отнесённое к единице массы материала в сухом состоянии.
- В) способность материала поглощать влагу и удерживать её в своих порах.
- Γ) способность материала поглощать водяные пары из воздуха.

Вариант 2

1. Влажность -это:

- А) способность материала сопротивляться деформации в поверхностном слое.
- Б) содержание влаги в материале в данный момент, отнесённое к единице массы материала в сухом состоянии.
- В) способность материала поглощать влагу и удерживать её в своих порах.
- Γ) способность материала поглощать водяные пары из воздуха.

2. Водопоглащение -это:

- А) способность материала сопротивляться деформации в поверхностном слое.
- Б) содержание влаги в материале в данный момент, отнесённое к единице массы материала в сухом состоянии.
- В) способность материала поглощать влагу и удерживать её в своих порах.
- Γ) способность материала поглощать водяные пары из воздуха.

3. Морозостойкость – это:

- А) способность материала терять находящуюся в его порах воду под действием высокой температуры.
- Б) способность материалов поглощать водяные поры из воздуха.
- В) способность материала поглощать влагу и удерживать её в своих порах при низких температурах.
- Γ) способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения.

4. Теплопроводность- это:

- 1) способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная.
- 2) способность материала поглощать при нагревании теплоту.
- 3) свойство материала расширяться при нагревании и сжиматься при охлаждении.
- 4) способность материала выдерживать при разрушения воздействие огня и воды в условиях пожара.

5. Теплоёмкость- это:

- А) способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная.
- Б) способность материала поглощать при нагревании теплоту.
- В) свойство материала расширяться при нагревании и сжиматься при охлаждении.
- Γ) способность материала выдерживать при разрушения воздействия огня и воды в условиях пожара.

6. Тепловое расширение - это:

- А) способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная.
- Б) способность материала поглощать при нагревании теплоту.
- В) свойство материала расширяться при нагревании и сжиматься при охлаждении.
- Γ) способность материала выдерживать при разрушения воздействия огня и воды в условиях пожара.

7. Огнестойкость - это:

- А) способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная.
- Б) способность материала поглощать при нагревании теплоту.
- В) свойство материала расширяться при нагревании и сжиматься при охлаждении.
- Γ) способность материала выдерживать при разрушения воздействия огня и воды в условиях пожара.

8. К механическим свойствам металлов относят:

- А) свариваемость, обрабатываемость резанием.
- Б) цвет, температуру плавления.
- В) растворимость, коррозионную стойкость.
- Γ) прочность, твердость, пластичность.

9. Ударная вязкость металла определяется по формуле:

A)
$$HB = \frac{F}{S}$$

Б)
$$KC = \frac{A}{S}$$

B)
$$\sigma = \frac{F_{pasp}}{S}$$

$$\Gamma$$
) $\delta = \frac{l}{l_0}$.

10. Твердость материала определяется числом твердости и рассчитывается по формуле:

A)
$$HB = \frac{F}{S}$$
 ,где F –нагрузка, а S – площадь отпечатка.

Б)
$$KC = \frac{A}{S}$$
,где A – работа, а S – площадь сечения образца.

В)
$$\sigma = \frac{F_{\it pasp}}{S}$$
 , где $F_{\it Pasp}$ – сила разрушения, а S – площадь сечения образца.

$$\Gamma$$
) $\delta = \frac{l}{l_0}$, где $1-$ изменение длины, а l_0- первоначальная длина.

11. Прочность характеризуется пределом прочности и определяется по формуле:

A)
$$HB = \frac{F}{S}$$
 ,где F –нагрузка, а S – площадь отпечатка.

Б)
$$KC = \frac{A}{S}$$
,где A – работа, а S – площадь сечения.

В)
$$\sigma = \frac{F_{\textit{pasp}}}{S}$$
 , где $F_{\textit{Pasp}}$ – сила разрушения образца, а S – площадь сечения образца.

$$\Gamma$$
) $\delta=rac{l}{l_0}$, где $1-$ изменение длины образца, а l_0- первоначальная длина образца.

12. К технологическим свойствам металлов относят:

- 1) свариваемость, обрабатываемость резанием. (+)
- 2) цвет, температуру плавления.
- 3) растворимость, коррозионную стойкость.

4) прочность, твердость, пластичность.

Тема 2.1. Древесина и материалы из нее.

Вариант 1

1. Пористость древесины составляет:

- A) 50-70 %
- Б) 0-98 %
- B) 40-98 %

Γ) 0 %

2. Средняя плотность древесины составляет:

- A) 2880 кг\м³
- Б) меньше 1000 кг/м^3
- В) 1540 кг\м³
- Γ) от 1000 кг\м³ до 2000 кг\м³

3. Истинная плотность древесины составляет:

- A) 2880 кг\м³
- Б) меньше 1000 кг\м³
- B) 1540 кг\м³
- Γ) от 1000 кг\м³ до 2000 кг\м³

4. Теплопроводность древесины:

- А) высокая (вдоль волокон в 2 раза ниже, чем поперек).
- Б) высокая (одинакова вдоль и поперек волокон).
- В) низкая (одинакова вдоль и поперек волокон).
- Γ) низкая (вдоль волокон в 2 раза выше, чем в поперечном направлении).

5. Стандартной влажностью считается влажность древесины:

- A) 12 %
- Б) 8-12 %
- В) 35 % и выше

Г)до 100 %

6. Прочность древесины на растяжении и сжатии составляет:

- А) прочность при сжатии 480 МПа, при растяжении 280 МПа.
- Б) прочность при сжатии вдоль волокон составляет 40-60 МПа, при сжатии поперек волокон примерно 0,15- 0,3 от предела прочности вдоль волокон.

Прочность при растяжении вдоль волокон в 2-3 раза выше прочности при сжатии в этом направлении и составляет 100- 120 МПа.

- В) прочность при сжатии вдоль волокон составляет 400-600 МПа, поперек волокон 200- 300 МПа, прочность при растяжении вдоль волокон в 2-3 раза выше прочности при растяжении вдоль волокон.
- Г) прочность при сжатии и растяжении одинаковы и равны примерно 600 МПа.

7. Сбежистость это:

- А) значительное уменьшение диаметра по длине ствола.
- Б) резкое увеличение диаметра нижней части ствола.
- В) искривление ствола дерева в одном или нескольких местах.
- Γ) грибковые поражения и химические окраски.

8. Закомелистость это:

- А) значительное уменьшение диаметра по длине ствола.
- Б) резкое увеличение диаметра нижней части ствола.
- В) искривление ствола дерева в одном или нескольких местах.
- Г) грибковые поражения и химические окраски.

9. Кривизна ствола это:

- А) значительное уменьшение диаметра по длине ствола.
- Б) резкое увеличение диаметра нижней части ствола.
- В) искривление ствола дерева в одном или нескольких местах.

Г) грибковые поражения и химические окраски.

10. Косослой- это:

- А) не параллельность волокон древесины продольной оси пиломатериала.
- Б) изменение строения древесины, когда годовые кольца имеют разную толщину и плотность по разные стороны от сердцевины.
- В) внутренние трещины, идущие вдоль ствола от центра к периферии.
- Γ) полное или частичное отделение центральной части ствола от периферийной в результате первой.

Вариант 2

1. Крень- это:

- А) не параллельность волокон древесины продольной оси пиломатериалы.
- Б) изменение строения древесины, когда годовые кольца имеют разную толщину и плотность по разные стороны от сердцевины.
- В) внутренние трещины, идущие вдоль ствола от центра к периферии.
- Γ) полное или частичное отделение центральной части ствола от периферийной в результате первой.

2.Метик- это:

- А) не параллельность волокон древесины продольной оси пиломатериала.
- Б) изменение строения древесины, когда годовые кольца имеют разную толщину и плотность по разные стороны от сердцевины.
- В) внутренние трещины, идущие вдоль ствола от центра к периферии.
- Γ) полное или частичное отделение центральной части ствола от периферийной в результате первой.

3.Отлуп- это:

- А) не параллельность волокон древесины продольной оси пиломатериала.
- Б) изменение строения древесины, когда годовые кольца имеют разную толщину и плотность по разные стороны от сердцевины.
- В) внутренние трещины, идущие вдоль ствола от центра к периферии.
- Γ) полное или частичное отделение центральной части ствола от периферийной в результате первой.

4. Бревна строительные должны иметь:

- А) диаметр верхнего торца не менее 14 см и длину 4- 6,5 м.
- Б) диаметр верхнего торца 8- 13 см и длину 3- 9 м.
- В) диаметр верхнего торца 3-8 см и длину 3-9м.
- Г) диаметр верхнего торца 3-9 см и длину 9 м.

5. Подтоварник это часть ствола дерева, имеющий:

- А) диаметр верхнего торца не менее 14 см. и длину 4- 6,5 м.
- Б) диаметр верхнего торца 8-13 см. и длину 3-9 м.
- В) диаметр верхнего торца 3-8 см. и длину 3-9м.
- Г) диаметр верхнего торца 3-9 см. и длину 9м.

6. Жерди имеют:

- А) диаметр верхнего торца не менее 14 см. и длину 4- 6,5см.
- Б) диаметр верхнего торца 8-13 см. и длину 3-9 м.
- В) диаметр верхнего торца 3-9 см. и длину 3-9м.
- Г) диаметр верхнего торца 3см. и длину 9м.

7. Фанера это:

- А) многослойный листовой материал, состоящий из склеенных между собой трех и более листов шпона (тонкий слой древесины виде непрерывной широкой ленты).
- Б) тонколистовой прочный материал получаемый прессованием волокон древесины.
- В) листовой материал получаемый прессованием стружек с добавлением клея или лака.
- Г) листовой материал получаемый прессованием стружек с добавлением цемента.

8. ДВП это:

- А) многослойный листовой материал, состоящий из склеенных между собой трех и более листов шпона (тонкий слой древесины виде непрерывной широкой ленты).
- Б) тонколистовой прочный материал получаемый прессованием волокон древесины.
- В) листовой материал получаемый прессованием стружек с добавлением клея или лака.
- Г) листовой материал получаемый прессованием стружек с добавлением цемента.

9. ДСП это:

- А) многослойный листовой материал, состоящий из склеенных между собой трех и более листов шпона (тонкий слой древесины виде непрерывной широкой ленты).
- Б) тонколистовой прочный материал получаемый прессованием волокон древесины.
- В) листовой материал получаемый прессованием стружек с добавлением клея или лака.
- Г) листовой материал получаемый прессованием стружек с добавлением цемента.

10. ЦСП это:

- А) многослойный листовой материал, состоящий из склеенных между собой трех и более листов шпона (тонкий слой древесины виде непрерывной широкой ленты).
- Б) тонколистовой прочный материал получаемый прессованием волокон древесины.
- В) листовой материал получаемый прессованием стружек с добавлением клея или лака.
- Г) листовой материал получаемый прессованием стружек с добавлением цемента.

Тема 2.2. Природные каменные материалы

Вариант 1

1. К глубинным магматическим породам относятся:

А) пемза, вулканический пепел, песок и вулканические туфы.

- Б) гравий, песок, глина, брекчии, конгломераты, песчаники, известняки, мел, гипс.
- В) гранит, сиенит, габбро и диорит.
- Г) мраморы, гнейсы, глинистый сланец, кварциты.

2. Глина это:

- А) Осадочные горные породы состоящие из глинистых минералов (размер частиц не превышает 0,005мм), пыли (0,005-0,16мм) и песка (0,16-5).
- Б) Осадочные горные породы состоящие из глинистых минералов, доломита и песка.
- В) Глубинная горная порода состоящая из гранита, песка, доломита.
- Г) Метаморфическая осадочные горные породы состоящие из глинистых минералов пыли и песка.

3. К осадочным породам относятся:

- А) пемза, вулканический пепел, песок и вулканические туфы.
- Б) гравий, песок, глина, брекчии, конгломераты, песчаники, известняки, мел, гипс.
- В) гранит, сиенит, габбро и диорит.
- Г) мраморы, гнейсы, глинистый сланец, кварциты.

4. Бутовый камень это:

- А) Минеральные зерна размером от 5 до 0,16мм, получаемые при прессовании мелких рыхлых пород или добавлением и рассевом отходов каменно обработки.
- Б) Окатанные зерна размером от 5 до 150мм, получаемые из рыхлых залежей рассевом.
- В) Куски камня неправильной формы размером от 5 до 150мм, получаемые дроблением крупных кусков горных пород с последующим рассевом.
- Г)Крупные куски камня неправильной формы, получаемые взрывным методом.

5. Щебень это:

- А) Минеральные зерна размером от 5 до 0,16мм, получаемые при прессовании мелких рыхлых пород или добавлением и рассевом отходов каменно обработки.
- Б) Окатанные зерна размером от 5 до 150мм, получаемые из рыхлых залежей рассевом.
- В) Куски камня неправильной формы размером от 5 до 150мм, получаемые дроблением крупных кусков горных пород с последующим рассевом.
- Г)Крупные куски камня неправильной формы, получаемые взрывным методом.

6. Гравий это:

- А) Минеральные зерна размером от 5 до 0,16мм, получаемые при прессовании мелких рыхлых пород или добавлением и рассевом отходов каменно обработки.
- Б) Окатанные зерна размером от 5 до 150мм, получаемые из рыхлых залежей рассевом.
- В) Куски камня неправильной формы размером от 5 до 150мм, получаемые дроблением крупных кусков горных пород с последующим рассевом.
- Г)Крупные куски камня неправильной формы, получаемые взрывным методом.

7. Гранит это горная порода, обладающая следующими свойствами:

- А) Отсутствие пор, высокая прочность, твердость, морозостойкость, декоративность, цвет розовый, серый, темно-красный.
- Б) Не высокая твердость, водопоглащение-1%, не имеет высокую плотность и прочность, цвет как чисто белый, так и любой другой.
- В) Твердость не большая (3-3,5), прочность при сжатии составляет 10-100 МПа, цвет: белый, светло-серый, серовато-кремовый или желтоватый.
- Г) Очень пористая порода (пористость до 80%), имеет низкую теплопроводность, прочность при сжатии не велика.

8. Песок это:

- А) Минеральные зерна размером от 5 до 0,16мм, получаемые при прессовании мелких рыхлых пород или добавлением и рассевом отходов каменно обработки.
- Б) Окатанные зерна размером от 5 до 150мм, получаемые из рыхлых залежей рассевом.
- В) Куски камня неправильной формы размером от 5 до 150мм, получаемые дроблением крупных кусков горных пород с последующим рассевом.
- Г)Крупные куски камня неправильной формы, получаемые взрывным методом.

9. Мрамор это горная порода, обладающая следующими свойствами:

- А) Отсутствие пор, высокая прочность, твердость, морозостойкость, декоративность, цвет розовый, серый, темно-красный.
- Б) Не высокая твердость, водопоглащение-1%, не имеет высокую плотность и прочность, цвет как чисто белый, так и любой другой.
- В) Твердость не большая (3-3,5), прочность при сжатии составляет 50-300 МПа, цвет: белый, так и самых разнообразных цветов с характерным «мрамовидным рисунком».
- Г) Очень пористая порода (пористость до 80%), имеет низкую теплопроводность, прочность при сжатии не велика.

10.К метаморфическим породам относятся:

- А) пемза, вулканический пепел, песок и вулканические туфы.
- Б) гравий, песок, глина, брекчии, конгломераты, песчаники, известняки, мел, гипс.
- В) гранит, сиенит, габбро и диорит.
- Г) мраморы, гнейсы, глинистый сланец, кварциты.

11. Известняк плотный это горная порода обладающая следующими свойствами:

- А) Отсутствие пор, высокая прочность, твердость, морозостойкость, декоративность, цвет розовый, серый, темно-красный.
- Б) Не высокая твердость, водопоглащение-1%, не имеет высокую плотность и прочность, цвет как чисто белый, так и любой другой.
- В) Твердость не большая (3-3,5), прочность при сжатии составляет 10-100 МПа, цвет: белый, светло-серый, серовато-кремовый или желтоватый.
- Γ) Очень пористая порода (пористость до 80%), имеет низкую теплопроводность, прочность при сжатии не велика.

12. Пемза это горная порода, обладающая следующими свойствами:

- А) Отсутствие пор, высокая прочность, твердость, морозостойкость, декоративность, цвет розовый, серый, темно-красный.
- Б) Не высокая твердость, водопоглащение-1%, не имеет высокую плотность и прочность, цвет как чисто белый, так и любой другой.
- В) Твердость не большая (3-3,5), прочность при сжатии составляет 10-100 МПа, цвет: белый, светло-серый, серовато-кремовый или желтоватый.
- Γ) Очень пористая порода (пористость до 80%), имеет низкую теплопроводность, прочность при сжатии не велика.

Тема 3.1. и. 3.2. Керамические материалы. Стекло, ситаллы и каменное литье.

1. Марблит –это:

1) листы витринного стекла, покрытые с внутренней стороны керамической краски, закрепленной термообработкой.

- 2) листы, отформованные из цветного глушенного стекла толщиной 6-12 мм.
- 3) кусочки цветного глушенного стекла неправильной формы размером около 20 мм.
- 4) получается нанесением на прямоугольные плитки из стекла размером от 100*100 мм до 200*200 мм глазури с последующей термообработкой для ее закрепления.

2. Светорассеивающим называют стекло:

- А) получаемое специальной термической обработкой. При разрушении такое стекло распадается на мелкие кусочки кубической формы, безопасные для человека.
- Б) получаемое путем запрессовки в расплавленную стекломассу чистой сетки из хромированной стальной проволоки.
- В) получаемое с помощью запрессовки между слоями стекла эластичной полимерной пленки с целью упрочнения.
- Γ) которое пропускает свет, но не дает сквозной видимости.

3. Стекловолокно - это:

- А) длиноразмерные (до 5 м) профилированные элементы из стекла, изготовляемые методом горизонтального проката.
- Б) закристаллизованные стекла.
- В) тончайшие волокна стекла диаметром 3 100мкм, длиной до 20 км.
- Γ) изделие состоящее из двух или трех листов стекла, герметично соединенных между собой по контору.

4. Отощающие материалы (шамот, дегидрадированную глину, гранулированный доменный шлак) вводят в сырьевую керамическую массу для:

- А) получения плотного водонепроницаемого покрытия.
- Б) понижения температуры спекания глины.
- В) повышения плотности глины.
- Г)с Снижения пластичности и уменьшения воздушной и огневой усадки глин.

5. Глазури применяют для:

- А) получения плотного водонепроницаемого покрытия.
- Б) понижения температуры спекания глины.
- В) повышения плотности глины.
- Г) снижения пластичности и уменьшения воздушной и огневой усадки глин.

6. Плавни (полевые шпаты, железную руду, тальк) применяют для:

- А) получение плотного водонепроницаемого покрытия.
- Б) понижения температуры спекания глины.
- В) повышение пластичности глины.
- Г) снижение пластичности и уменьшения воздушной и огневой усадки глин

7. Пластификаторы применяют для:

- А) получения плотного водонепроницаемого покрытия.
- Б) понижения температуры спекания глины.
- В) повышение пластичности глины.
- Г) снижения пластичности и уменьшения воздушной и огневой усадки глин.

8. Ситаллы - это:

- А) длиноразмерные (до 5 м) профилированные элементы из стекла, изготовляемые методом горизонтального проката.
- Б) закристаллизованные стекла.

- В) тончайшие волокна стекла диаметром 3 100мкм, длиной до 20 км.
- Γ) изделие состоящее из двух или трех листов стекла, герметично соединенных между собой по контору.

9. Кирпич керамический обыкновенный имеет следующие размеры:

- А) 250*120*65см.
- Б) 258*123*68 см.
- В) 288*138*68 см.
- Г) 250*100*60 см.

10. У обыкновенного керамического кирпича есть два недостатка:

- А) Большая плотность и большие размеры.
- Б) Относительно высокая плотность и небольшие размеры.
- В) Большая масса и низкая плотность.
- Г) Низкая теплопроводность и небольшие размеры.

11. Ламинированным называют стекло:

- А) получаемое специальной термической обработкой. При разрушении такое стекло распадается на мелкие кусочки кубической формы, безопасные для человека.
- Б) получаемое путем запрессовки в расплавленную стекломассу чистой сетки из хромированной стальной проволоки.
- В) получаемое с помощью запрессовки между слоями стекла эластичной полимерной пленки с целью упрочнения.
- Γ) которое пропускает свет, но не дает сквозной видимости.

12. Стемалит -это:

- А) листы витринного стекла, покрытые с внутренней стороны керамической краски, закрепленной термообработкой.
- Б) листы, отформованные из цветного глушенного стекла толщиной 6-12 мм.
- В) кусочки цветного глушенного стекла неправильной формы размером около 20 мм.
- Г) получается нанесением на прямоугольные плитки из стекла размером от 100*100 мм до 200*200 мм глазури с последующей термообработкой для ее закрепления.

Вариант 2

1. Фаянс получают из:

- А) смеси песка, доломита и гипса.
- Б) смеси глины, песка и цемента.
- В) смеси беложгущихся глин (60-65 %), кварца (30-35%) и полевого шпата.
- Г) смеси беложгущихся глин (50%), но с большим содержанием полевых шпатов (20-24%), и меньшим содержанием кварца (20-25%).

2. Фарфор получают из:

- А) смеси песка, доломита и гипса.
- Б) смеси глины, песка и цемента.
- В) смеси беложгущихся глин (60-65 %), кварца (30-35%) и полевого шпата.
- Γ) смеси беложгущихся глин (50%), но с большим содержанием полевых шпатов (20-24%), и меньшим содержанием кварца (20-25%).

3. Неорганическое стекло получают из следующих компонентов:

- А) Кремнезема, глинозема, оксида натрия, оксида кальция и магния, красителей, осветлителей.
- Б) Глины, песка, цемента.
- В) Песка, гипса и доломита.

Г) Песка, соды, калиевой селитры и цемента.

4. Стеклянная эмалированная плитка это:

- А) листы витринного стекла, покрытые с внутренней стороны керамической краски, закрепленной термообработкой.
- Б) листы, отформованные из цветного глушенного стекла толщиной 6-12 мм.
- В) кусочки цветного глушенного стекла неправильной формы размером около 20 мм.
- Г) получается нанесением на прямоугольные плитки из стекла размером от 100*100 мм до 200*200 мм глазури с последующей термообработкой для ее закрепления.

5. Плотность оконного стекла:

- A) 100кг/м^3
- Б) 2550 кг/м^3
- В) более 300 кг/м^3
- Γ) 3500 κг/ M^3

6. Стеклопакеты - это:

- А) длиноразмерные (до 5 м) профилированные элементы из стекла, изготовляемые методом горизонтального проката.
- Б) закристаллизованные стекла.
- В) тончайшие волокна стекла диаметром 3 100мкм, длиной до 20 км.
- Γ) изделие состоящее из двух или трех листов стекла, герметично соединенных между собой по контору.

7. Теплопроводность стекла равна:

- А) 720 Вт/м*К.
- Б) 0 Вт/м*К.
- B) 0.6-0.8 BT/M*K.
- Г) 1000 Вт/м*К.

8. Смальта –это:

- А) листы витринного стекла, покрытые с внутренней стороны керамической краски, закрепленной термообработкой.
- Б) листы, отформованные из цветного глушенного стекла толщиной 6-12 мм.
- В) кусочки цветного глушенного стекла неправильной формы размером около 20 мм.
- Г) получается нанесением на прямоугольные плитки из стекла размером от 100*100 мм до 200*200 мм глазури с последующей термообработкой для ее закрепления.

9. Главным недостатком стекла является:

- А) Твердость.
- Б) Плотность.
- В) Теплопроводность.
- Г) Хрупкость

10. Закаленным называют стекло:

- А) получаемое специальной термической обработкой. При разрушении такое стекло распадается на мелкие кусочки кубической формы, безопасные для человека.
- Б) получаемое путем запрессовки в расплавленную стекломассу чистой сетки из хромированной стальной проволоки.
- В) получаемое с помощью запрессовки между слоями стекла эластичной полимерной пленки с целью упрочнения.
- Γ) которое пропускает свет, но не дает сквозной видимости.

11. Армированным называют стекло:

- А) получаемое специальной термической обработкой. При разрушении такое стекло распадается на мелкие кусочки кубической формы, безопасные для человека.
- Б) получаемое путем запрессовки в расплавленную стекломассу чистой сетки из хромированной стальной проволоки.
- В) получаемое с помощью запрессовки между слоями стекла эластичной полимерной пленки с целью упрочнения.
- Γ) которое пропускает свет, но не дает сквозной видимости.

12. Стеклопрофилит - это:

- А) длиноразмерные (до 5 м) профилированные элементы из стекла, изготовляемые методом горизонтального проката.
- Б) закристаллизованные стекла.
- В) тончайшие волокна стекла диаметром 3 100мкм, длиной до 20 км.
- Γ) изделие состоящее из двух или трех листов стекла, герметично соединенных между собой по контору.

Тема 3.3. Металлы и металлические изделия

Вариант 1

1. Содержание углерода в стали У15 составляет:

- 1) 15 %;
- 2) 0,15%;
- 3) 1,5 %;
- 4) 0,015%.

2. Структура стали У8А представляет собой:

- 1) перлит + цеметит;
- 2) перлит;
- 3) цеметит;
- 4) перлит + феррит.

3. Структура стали У40 представляет собой:

- 1) феррит;
- 2) феррит + перлит;
- 3) перлит;
- 4) перлит + цементит.

4. В серых чугунах углерод содержится в виде графитных частиц:

- А) сфероидальной формы
- Б) пластинчатой формы
- В) хлопьевидной формы
- Г) шаровидной формы

5. В ковких чугунах углерод содержится в виде графитных частиц:

- А) сфероидальной формы
- Б) пластинчатой формы
- В) хлопьевидной формы
- Г) шаровидной формы

6.Сталь марки 60С2ХА содержит легирующий элемент кремний в количестве примерно:

- A) 0,6 %
- Б) 2 %
- B) 1,5%
- Γ) 60%

7.Сталь марки 36Х2Н2МФА содержит легирующий элемент никель в количестве примерно:

- A) 2 %
- Б) 1%
- B) 3%
- Γ) 36%

8.Сталь марки Р6М5К5 по назначению является:

- А) конструкционной
- Б) инструментальной
- В) конструкционной подшипниковой
- Г) электротехнической

9. Закалка заэвтектоидной стали производится по режиму:

- А) полной закалки
- Б) неполной закалки
- В) без выбора режима
- Γ) поверхностной закалки

10. В нагретом под закалку состоянии эвтектоидная сталь имеет структуру:

- А) аустенит
- Б) аустенит + цементит
- В) аустенит + перлит
- Г) перлит

11. Латуни - это сплавы на основе:

- А) меди
- Б) титана

- В) алюминия Г) вольфрама 12. В составе сплава марки ЛМцЖ55-3-1 содержится 3 %: А) меди Б) марганца В) железа Г) цинка 13. В составе сплава марки БрОЦСН 3-7-5-1 содержится 7 %: А) олова Б) цинка В) свинца Г) меди 14. Нагрев под закалку заэвтектоидных сталей осуществляется до температуры: А) соответствующей линии ликвидус Б) соответствующей линии солидус В) на 30—50 °С - выше критической точки Ac_1 Г) до температуры плавления 15. Нагрев стали, при низком отпуске, соответствует температурному интервалу: A) 150-250 °C Б) 300—500 °C B) 500—700 °C Γ) 1000°C 16. Нагрев стали, при среднем отпуске, соответствует температурному интервалу: A) 150—250 °C; Б) 300—500 °C; B) 500—700 °C Γ) 1000—1500 °C. 17. Структура стали в результате высокого отпуска, состоит из: А) мартенсита; Б) сорбита; В) троостита; Г) перлита. 18. В результате отпуска остаточные напряжения
- А) уменьшаются;
- Б) увеличиваются;
- В) не изменяются;
- Γ) сначала снижается, а затем возрастает.

19. В результате закалки стали значение твердости:

- А) снижается;
- Б) повышается;
- В) не изменяется;

Г) сначала снижается, а затем возрастает.
20. После закалки доэвтектоидная сталь имеет структуру:
A) аустенит + феррит; Б) сорбит;
В) картенсит + цементит.
Γ) мартенсит.
21. Бронзы - это сплавы на основе.
А) алюминия;
Б) никеля;
В) меди;
Г) сначала снижается, а затем возрастает.
22. В марках латуней легирующий элемент свинец обозначается буквой:
A) O;
Б) С;
B) K.
Г) сначала снижается, а затем возрастает.
23. Марка сплава Д16 обозначает:
А) баббит;
Б) латунь;
В) дуралюмин.
Г) бронза.
24. Марка сплава ЛАЖ1-1 обозначает:
А) латунь алюминиево-железную;
Б) латунь марганцево-железную;
В) литейный алюминиевый сплав.
Г) легированная сталь.
25. В составе сплава марки БрОЦСН 3-7-5-1 содержится 7 %:
А) олова;
Б) цинка;
В) свинца.
Г) сначала снижается, а затем возрастает.

Вариант 2

1.	Содержание углерода в стали	У10 составляет:
	содержание утперода в стали	o io cociabonici.

- 1) 1 %; 2) 0,1%;

- 3) 1,01%; 4) 10%. 2. Содержание углерода в стали У65 составляет: 1) 6,5 %; 2) 0,65%; 3) 0,065 %; 4) 65%. 3. Структура стали У7 представляет собой: 1) аустенит; 2) перлит; 3) перлит + феррит; 4) перлит + цементит. 4. Структура стали У20 представляет собой: 1) феррит; 2) перлит + феррит; 3) перлит; 4) перлит + цементит. 5. В результате закалки стали значение вязкости А) снижается; Б) повышается; В) не изменяется; Γ) сначала повышается, а затем снижается. 6. В результате отпуска пластичность и вязкость стали А) уменьшается; Б) увеличивается; В) не изменяется; Γ) сначала повышается, а затем снижается.
- 7. Наиболее значительное снижение твердости происходит в результате:
- А) низкого отпуска;
- Б) среднего отпуска;
- В) высокого отпуска;
- Γ) закалки.

8. Пересыщенный твердый раствор углерода в α-железе - это:

- А) перлит;
- Б) сорбит;
- В) мартенсит;
- Γ) аустенит.

9. После закалки эвтектоидная сталь имеет структуру:

- А) мартенсит;
- Б) мартенсит + цементит;
- В) мартенсит + феррит;
- Г) перлит.

10. В результате закалки стали значение твердости:

- А) снижается;
- Б) повышается;
- В) не изменяется;
- Γ) сначала повышается, а затем снижается.

11. ВЧ 40-15 – маркировка:

- А) высокопрочного чугуна;
- Б) ковкого чугуна;

В) серого чугуна;
Г) высокопрочной стали.
12.Сталь марки 60С2ХА содержит легирующий элемент кремний в количестве примерно:
A) 0,6 %;
Б) 2 %;
B) 1,5%;
Γ) 60%.
13.Сталь марки 36Х2Н2МФА содержит легирующий элемент никель в количестве
примерно:
A) 2 %;
Б) 1%;
B) 3%;
Γ)36%.
14.Легированная сталь, структура которой представлена аустенитом и небольшим
количеством карбидов, относится к:
А) аустенитному классу;
Б) перлитному классу;
В) карбидному классу;
Г) мартенситному классу.
15. СЧ 25 – маркировка:
A) pressychatory wymyse
А) высокопрочного чугуна;
Б) ковкого чугуна;
В) серого чугуна;
Г) сталь углеродистая.
16. Нагрев стали, при низком отпуске, соответствует температурному интервалу:
A) 150—250 °C;
Б) 300—500°С;
B) 500—700 °C;
Γ) 1000—1500 °C.
17. Структура стали, в результате среднего отпуска, представляет собой:
А) мартенсит;
Б) троостит;
В) сорбит;
Г) перлит.
10 D
18. В результате отпуска пластичность и вязкость стали
А) уменьшается;
A) уменьшается; Б) увеличивается;
А) уменьшается; Б) увеличивается; В) не изменяется.
A) уменьшается; Б) увеличивается;
А) уменьшается; Б) увеличивается; В) не изменяется.
А) уменьшается; Б) увеличивается; В) не изменяется. Г) сталь углеродистая. 19. Наиболее значительное снижение твердости происходит в результате:
А) уменьшается; Б) увеличивается; В) не изменяется. Г) сталь углеродистая. 19. Наиболее значительное снижение твердости происходит в результате: А) низкого отпуска;
А) уменьшается; Б) увеличивается; В) не изменяется. Г) сталь углеродистая. 19. Наиболее значительное снижение твердости происходит в результате:

20. Закалка заэвтектоидной стали производится по режиму:

А) полной закалки;	
Б) неполной закалки;	
В) без выбора режима.	
Г) ступенчатой закалки.	
21. Силумины - это сплавы на основе:	
А) цинка;	
Б) алюминия;	
В) фосфора.	
Г) сталь углеродистая.	
22. В марках бронзы легирующий элемент цинк обозначается бу	квой:
А) Мц;	
Б) Ц;	
B) H.	
Γ) сталь углеродистая.	
23. Марка сплава Б83 обозначает:	
А) бронзу;	
Б) силумин;	
В) баббит;	
Г) сталь углеродистая.	
24. Марка сплава БрАЖС7-1,5—1,5 обозначает:	
А) алюминиевую латунь;	
Б) алюминиевую бронзу;	
В) алюминиево-железосвинцовую бронзу;	
Г) сталь углеродистая.	
25. В составе сплава марки Л63 содержится 63 %:	
А) олова;	
Б) цинка;	
В) меди;	
Г) латуни.	
Вариант 3	
1. Содержание углерода в стали У40 составляет:	
1) 4%;	
2) 0,4%;	
3) 0,04%;	
4) 2%.	
2. Содержание углерода в стали У10А составляет:	
1) 10 %;	
2) 1%;	
3) 0,1%;	
4) 0,01%.	
3. Структура стали У55 представляет собой:	
1) перлит + феррит;	
2) ледебурит;	
3) перлит;	
4) перлит + цементит.	

1) феррит;
2) перлит + феррит;
3) перлит;
4) перлит + цементит.
5. ВЧ 45-10 – маркировка:
A)
А) серого чугуна;
Б) высокопрочного чугуна;
В) ковкого чугуна.
Г) высокопрочная сталь.
6.Сталь марки 45Г2 является:
А) углеродистой;
Б) легированной;
В) углеродистой обыкновенного качества;
Г)высококачественной.
7.Сталь марки ШХ15 по назначению является:
А) конструкционной;
Б) инструментальной;
В) конструкционной подшипниковой;
Г)быстрорежущей.
8.Сталь марки 45ХН2МФА содержит легирующий элемент никель в количестве примерно:
A) 45%;
Б) 4%;
B) 2%;
Г) до 1%.
9. Сталь марки 7Х3 содержит легирующий элемент хром в количестве примерно:
A) 7%;
Б) 3%;
B) 2%;
Г) до 1%.
10. В нагретом под закалку состоянии эвтектоидная сталь имеет структуру:
А) аустенит;
Б) аустенит + цементит;
В) аустенит + перлит;
Г) перлит.
11. Нагрев стали, при низком отпуске, соответствует температурному интервалу:
A) 150—250 °C;
Б) 300—500 °С;
B) 500—700 °C.
Γ) 1000—1500 °C.
12. Структура стали, в результате среднего отпуска, представляет собой:
А) мартенсит;
Б) троостит;
В) сорбит;
Γ) перлит.
13. В результате отпуска пластичность и вязкость стали
А) уменьшается;

Структура стали У20 представляет собой:

ы) увеличивается,
В) не изменяется;
Γ) сначала повышается, а затем снижается.
14. Наиболее значительное снижение твердости происходит в результате:
А) низкого отпуска;
Б) среднего отпуска;
В) высокого отпуска;
Г) ступенчатого отпуска.
15. Укажите температуру нагрева под закалку для стали У8:
A) 770 °C;
Б) 1000°C;
B) 700 °C.
Γ) 1500 °C.
16. В результате закалки стали значение вязкости:
А) снижается;
Б) повышается;
В) не изменяется.
Γ) сначала повышается, а затем снижается.
17. После закалки эвтектоидная сталь имеет структуру:
А) мартенсит;
Б) мартенсит + цементит;
В) мартенсит + феррит.
Г) перлит.
18. Закалка доэвтектоидной стали производится по режиму:
А) полной закалки;
Б) неполной закалки;
В) без выбора режима;
Г) ступенчатой закалки.
19. В результате охлаждения со скоростью выше критической аустенит переходит в
структуру:
А) перлит;
Б) мартенсит;
В) феррит;
Г) цементит.
20. Укажите температуру нагрева под закалку для стали У10:
A) 1200 °C;
Б) 760 °C;
B) 800 °C;
Γ) 1500 °C.
21. Дуралюмины - это сплавы на основе:
А) титана;
Б) алюминия;
В) магния;

Г) меди.
22. В марках латуней легирующий элемент никель обозначается буквой:
А) Мц; Б) Н; В) Ц. Г) К. 23. Марка сплава Л 96 обозначает:
 A) латунь; Б) дуралюмин; B) бронзу. Г) медь. 24. Марка сплава БрОЦС5-7-5 обозначает:
А) оловянисто-цинково-свинцовистую бронзу; Б) оловянисто-цинково-кремниевую бронзу; В) оловянисто-цинковую бронзу. Г) латунь. 25. В составе сплава марки ЛМцЖ55-3-1 содержится 3 %:
A) меди;Б) марганца;B) железа.Г) алюминий.
Вариант 4
1. Содержание углерода в стали У20 составляет: 1) 0,2 %; 2) 2,0% 3) 20%; 4) 0,1%. 2. Содержание углерода в стали У12 составляет: 1) 12%; 2) 1,2%; 3) 0,12 %; 4) 0,012%. 3. Структура стали У10А представляет собой: 1) феррит; 2) перлит + феррит; 3) перлит + цементит; 4) цементит. 4. КЧ 37-12 – маркировка:
А) высокопрочного чугуна; Б) ковкого чугуна; В) серого чугуна; Г) ковкая сталь.
5.Сталь марки 38ХГН содержит легирующий элемент хром в количестве примерно: A) 38%; Б) до 1,5;

- B) 0.38%; Г) до 1%. 6.Сталь марки 4XB2C содержит легирующий элемент вольфрам в количестве примерно: A) 4%: Б) 2%; B) 1%; Г) до 1%. 7.В стали марки 20ХЗМВФ отсутствует легирующий элемент: А) никель: Б)молибден; В)вольфрам. Г) ванадий. 8. Легированная сталь, имеющая мартенситную структуру, относится к: А) аустенитному классу; Б) карбидному классу; В) мартенситному классу; Γ) высокопрочному классу. 9.Сталь марки Р6М5К5 по назначению является: А) конструкционной; Б) инструментальной; В) конструкционной подшипниковой; Г) электротехнической. 10. Легированная сталь, структура которой представлена перлитом и некоторым количеством феррита или карбидов, относится: А)ферритному классу; Б)перлитному классу; В)карбидному классу; Γ)мартенситному классу. 11.Сталь марки 35ХМ по назначению является: А) конструкционной; Б) инструментальной; В) конструкционной подшипниковой. Г) электротехнической. 12.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0.5%; Б) до 1%; B) 5%; Γ) 40%. 13.Сталь марки 3Х3М3Ф содержит легирующий элемент молибден в количестве примерно: A) 3%; Б) 6%; B) 9%; Г)до 1%. 14. Закалка заэвтектоидной стали производится по режиму: А) полной закалки; Б) неполной закалки; В) без выбора режима; Г) ступенчатой закалки.
- 15. Пересыщенный твердый раствор углерода в α-железе это:

А) перлит;
Б) сорбит;
В) мартенсит;
Г) аустенит.
16. Нагрев стали, при высоком отпуске, соответствует температур
ному интервалу:
A) 150—250 °C;
Б) 300—500°С;
B) 500—700 °C;
Γ) 1000°C.
17. Структура стали, в результате низкого отпуска, представляет собой:
А) мартенсит;
Б)троостит;
В) сорбит;
Г) перлит.
18. В результате отпуска твердость и хрупкость стали
А) снижаются;
Б) возрастают;
В) не изменяются.
Г) сначала снижается, а затем возрастает.
19. Незначительное снижение твердости происходит в результате:
13. Пезначительное спижение твердости происходит в результате.
А) низкого отпуска;
Б) среднего отпуска;
В) высокого отпуска;
Г) высокого отпуска.
20. Цементит в сорбите отпуска имеет форму:
А) пластинок;
Б) зерен;
В) хлопьев.
Г) шара.
21. Латуни - это сплавы на основе:
А) меди;
Б) титана;
В) алюминия;
Г) алюминия.
22. В марках бронзы легирующий элемент железо обозначается
буквой:
А) Ф;
Б) Ж; В) С;
Γ) A.
23. Марка сплава БрОЦ4-3 обозначает:
-5. Dapin caraba pro-1. 5 0000manci.
А) латунь;
Б) бронзу;
В) силумин;
Γ) сталь.

24. Марка сплава АЛ2 обозначает:

- А) алюминиевую латунь;
- Б) литейный алюминиевый сплав;
- В) алюминиевую бронзу;
- Г) алюминий марки 2.

25. В составе сплава марки Б16 содержится 16 %:

- А) цинка;
- Б) олова;
- В) меди.
- Г) бериллия.

Тема 6.6. Электротехнические материалы

Вариант 1

1. К проводниковым материалам относится:

- А) медь;
- Б) бумага электротехническая;
- В) кремний
- Г) воздух.

2. Манганины являются материалами:

- А) с высокой проводимостью;
- Б) с высоким сопротивлением;
- В) обладающими свойствами диэлектрика;
- Г) обладающими свойствами полупроводника.

3. Обмоточные провода применяют для:

- А) изготовления обмоток электрических машин, аппаратов и приборов;
- Б) соединения различных приборов;
- В) распределения электрической энергии.
- Г) воздушных линий электропередачи.

4. Токопроводящие жилы монтажных проводов изготавливают из:

- А) меди;
- Б) никеля;
- В) молибдена;
- Г) вольфрама.

5. Пермаллои – сплавы железа с никелем, относящиеся к:

- А) проводниковым материалам;
- Б) магнитомягким материалам;
- В) магнитотвердым материалам;
- Γ) полупроводниковым материалам.

6.Электрическая прочность, определяется по формуле:

$$A)E_{np}=U_{np}/h$$

$$E$$
) E _{пр} $=U/I$

B)
$$U_{m} = RI$$

$$\Gamma$$
)E=| Φ / t |

7. Ёмкость С плоского конденсатора определяется по формуле:

A)C= E_a/S

Б)C = 0.0884 E S(n-1)/d

B)C= 0,241 E l

 Γ)C=q/U

8. Температурный коэффициент удельного сопротивления определяется по формуле:

- A) TK $p = l_1 l_0 / l_0 (T_1 T_0)$
- Б) ТК $p=M_1-M_0/M_1$ (T_1-T_0)
- B) TK $p = p_1 p_2/p_1 (T_1-T_2)$
- Γ) TK p=RL/S.

9. Текстолит состоит из:

- А) нескольких слоёв специальной бумаги, пропитанной бакелитовым лаком.
- Б) нескольких слоёв капроновой или хлопчатобумажной ткани, пропитанной бакелитовой смолой
- В) нескольких слоёв бесщёлочной стеклоткани, пропитанной кремнийорганической смолой.
- Γ) нескольких слоев шпона.

10. С ростом температуры сопротивление диэлектриков:

- А) возрастает.
- Б) уменьшается.
- В) остается постоянным.
- Γ) сначала возрастает до T_k , а потом остается неизменным.

Вариант 2

1. К полупроводниковым материалам относится:

- А) сталь;
- Б) селен;
- В) медь;
- Г) графит.

2. Серебро является материалом:

- А) с высокой проводимостью;
- Б) с высоким сопротивлением;
- В) обладающим свойствами полупроводника;
- Г) обладающим свойствами диэлектрика.

3. Монтажные провода применяют для:

- 1) соединения различных приборов и частей в электрических аппаратах;
- 2) распределения электрической энергии;
- В) распределения воздушных линий электропередачи;
- Г) изготовления обмоток машин.

4. В качестве проводникового материала в обмоточных проводах применяют:

- 1) медь;
- 2) цинк;
- 3) вольфрам;
- 4) серебро.

5. Микафолий - материал на основе:

- 1) ртути;
- 2) слюды;
- 3) меди;
- 4) стекла.

6. Дипольная поляризация диэлектриков это:

- 1) векторная величина, её направление совпадают с направлением электрического момента от отрицательного заряда к положительному;
- 2) процесс упорядочения связанных электрических зарядов под действием приложенного напряжения;

- 3) смещение электронных орбит относительно положительного заряда ядра под действием внешнего электрического поля;
- 4) процесс соединения молекул исходного вещества без изменения его элементарного состава в большие молекулы высокополимерного вещества.

7. Как называют электроизоляционные составы изготовляемые из нескольких исходных веществ (смол, битумов, масел):

- 1) лаки;
- 2) компаунды;
- 3) эмали;
- 4) электроизоляционные картоны.

8. Способность диэлектриков функционировать при повышенных температурах или при резкой смене температур без ухудшения свойств, называется:

- 1) нагревостойкость;
- 2) упругость;
- 3) теплопроводность;
- 4) прочность.

9.С ростом температуры электрическое сопротивление проводников:

- 1) возрастает;
- 2) убывает;
- 3) остаётся постоянным;
- 4) сначала убывает, а после определённого значения температуры T_{κ} , не изменяется.

10. Манганин- это сплав, содержащий:

- 1) 60%-меди, 40%-никеля;
- 2) 84-86% меди, 2-3% никеля и 12-13% марганца;
- 3) 65% олова, 25% никеля, 10% марганца;
- 4) 40% свинца, 50% меди и 10% алюминия.

Вариант 3

1. К диэлектрическим материалам относится:

- 1) воздух;
- 2) бронза;
- 3) латунь;
- 4) селен.

2. Кремний является материалом:

- 1) с высокой проводимостью;
- 2) с высоким сопротивлением;
- 3) обладающим свойствами полупроводника;
- 4) обладающим свойствами диэлектрика.

3. Установочные провода и шнуры применяют для:

- 1) изготовления обмоток электрических машин;
- 2) присоединения к сети электродвигателей;
- 3) соединения различных частей в электрических машинах;
- 4) воздушных линий электропередачи.

4.Токопроводящие жилы монтажных проводов изготавливают из:

- А) хрома;
- Б) вольфрама;
- В) алюминия;
- Г) титана.

5. Электрические изоляторы изготавливаются из:

- А)бумаги;
- Б) стали;
- В) меди;
- Γ) фарфора.

6. Мусковит – это:

- А) калиевая слюда с серебристым цветом, имеющая нагревостойкость 500°С;
- Б) калиево-магнезиальное слюда с черным цветом, не изменяющая своих характеристик до 800°С;
- В) листовой твердый материал, изготовленный склеиванием смолой листочков щепаной слюды;
- Γ) рулонный материал, состоящий из нескольких слоев слюды, наклеенных на плотную телефонную бумагу.

7.Компаунды – это:

- А) растворы пленкообразующих веществ в органических растворителях;
- Б) лаки с введенными в них пигментами;
- В) жаростойкие проводниковые материалы;
- Γ) электроизоляционные составы, изготовляемые из смеси смол и битумов.

8. Гетинакс – это:

- А) листовой слоистый материал, в котором наполнителем являются листы пропитанной бумаги толщиной 0,1-0,12 мм;
- Б) листовой слоистый материал, в котором наполнителем является хлопчатобумажная ткань;
- В) листовой слоистый материал, в котором наполнителем является бесщелочная стеклянная ткань;
- Γ) листовой слоистый материал, в котором наполнителем является бесщелочная стеклянная ткань.

9. Сверхпроводимость- это:

- А) явление увеличения сопротивления проводника при возрастании температуры;
- Б) явление уменьшения магнитной проницаемости до нуля, при определенной температуре;
- В) явление перехода в жидкое состояние;
- Γ) явление резкого уменьшения сопротивления проводника до нулевых значений, при низких температурах.

10. Диэлектрики- это вещества, обладающие следующими свойствами:

- A) $\rho = 10^{-8} 10^{-5}$ OM M, TK p>0;
- Б) $\rho = 10^8 10^{18}$ Ом м, ТК p > 0;
- B) $\rho = 10^{-6} 10^{7}$ Om m, TK p<0:
- Γ) $\rho = 10^{-8} 10^{18}$ Om m, TK p<0.

Вариант 4

1.С ростом температуры электрическое сопротивление проводников:

- 1) возрастает;
- 2) убывает;
- 3) остаётся постоянным;
- 4) сначала убывает, а после определённого значения температуры T_{κ} , не изменяется.

2.На какие группы делят проводниковые материалы?

- 1) металлические и неметаллические;
- 2) простые и сложные;
- 3) активные и пассивные;

- 4) материалы высокой проводимости и сплавы высокого сопротивления.
- 3. Удельное сопротивление проводников, определяется по формуле:
- 1) p = R S / l;
- 2) p=U/I;
- 3) $p = Q^2 R t$;
- 4) R=U/I.

4.Пермаллой- это магнитный сплав, содержащий:

- 1) 5,4 % кремния, 9,6 % алюминия и 85 % железа;
- 2) железо и никель (от 40% до 80%);
- 3) железо и углерод до 2,14%;
- 4) меди и цинка.

5.Мусковит – это:

- 1) калиевая слюда с серебристым цветом, имеющая нагревостойкость 500°С;
- 2) калиево-магнезиальное слюда с черным цветом, не изменяющая своих характеристик до 800°С;
- 3) листовой твердый материал, изготовленный склеиванием смолой листочков щепаной слюды;
- 4) рулонный материал, состоящий из нескольких слоев слюды, наклеенных на плотную телефонную бумагу.

6.Компаунды – это:

- 1) растворы пленкообразующих веществ в органических растворителях.
- 2) лаки с введенными в них пигментами.
- 3) жаростойкие проводниковые материалы.
- 4) электроизоляционные составы, изготовляемые из смеси смол и битумов.

7. Гетинакс – это:

- 1) листовой слоистый материал, в котором наполнителем являются листы пропитанной бумаги толщиной 0,1-0,12 мм.
- 2) листовой слоистый материал, в котором наполнителем является хлопчатобумажная ткань.
- 3) листовой слоистый материал, в котором наполнителем является бесщелочная стеклянная ткань.
- 4) природный минерал, слоистого строения.

8.Константан- это сплав, содержащий:

- А) 54% меди, 1% марганца и 45% никеля.
- Б) 86% меди, 12% марганца и 2% никеля.
- В) 0,7% марганца,0,6% никеля, 12-15% хрома, 3,5% алюминия, остальное железо.
- Γ) железо и никеля (от 40 до 80%).

9. Проводники- это вещества, обладающие следующими свойствами:

- 1) $p=10^{-8}-10^{-5}$ OM M, TK p>0.
- 2) $p=10^8-10^{18}$ Om M, TK p>0.
- 3) $p=10^{-6}-10^7$ Om M, TK p<0.
- 4) $p=10^8-10^{18}$ Om m, TK p<0.

10. К магнитным материалам относится:

- 1) алюминий;
- 2) стекло;
- 3) пластмасса;
- 4) электротехническое железо.

3.2.Время на выполнение:

– 1 минута на 1 задание;

3.3. Критерии оценки

	Оценка	Критерии: правильно выполненные задания
5	«ОТЛИЧНО»»	от 85% до 100%
4	«хорошо»	от 75% до 85%
3	«удовлетворительно»	от 61% до 75%
2	«неудовлетворительно»	до 61%

4 Практические задания (ПЗ)

4.1 Текст задания

Лабораторное занятие № 1

Определение твердости металлов методом Бринелля.

Определить твердость методом Бринелля стального образца.

Лабораторное занятие № 2

Исследование пороков и качества древесины.

Изучить свойства различных пород древесины и выбрать древесину для железнодорожных шпал.

Лабораторное занятие №3

Исследование микроструктуры углеродистых сталей.

Зарисовать микроструктуры доэвтектоидной, эвтектоидной, заэвтектоидной стали.

Лабораторное занятие №4

Исследование микроструктуры чугунов.

Зарисовать микроструктуры белого, серого, ковкого и высокопрочного чугунов с указанием структурных составляющих.

Лабораторное занятие №5

Исследование микроструктуры цветных металлов и сплавов.

Зарисовать микроструктуры силумина, латуни, бронзы, дюралюминия, баббита, указать структурные составляющие сплавов.

Лабораторное занятие №6

Нормализация, закалка и отпуск углеродистой стали.

Выбор режимов термической обработки углеродистой стали, построение графика термической обработки.

Лабораторное занятие №7

Испытание строительного гипса.

Определить сроки схватывания гипсового теста с помощью прибора Вика и тонкость помола гипса.

Лабораторное занятие №8

Испытание строительной воздушной извести.

Определить скорость гашения извести и содержание непогасившихся зерен в воздушной извести.

Лабораторное занятие №9

Исследование качества и установление марки цемента

Определить истинную и среднюю плотность, тонкость помола , определить марку цемента. Лабораторное занятие N = 10

Технико-экономическое обоснование и выбор состава бетона для изготовления железобетонных шпал

Изучение свойств бетона, подбор состава бетона по заданным значениям прочности бетона.

Лабораторное занятие №11

Определение температуры вспышки и вязкости минеральных масел.

Изучить устройство капиллярного вискозиметра и прибора для определения температуры вспышки, определить вязкость и температуру вспышки осевого масла.

Лабораторное занятие №12

Определение температуры каплепадения пластичных смазок.

Изучить устройство приборов для определения температуры каплепадения, определить температуру каплепадения смазки буксол.

4.2 Время на выполнение:

Время на выполнение лабораторных и практических работ - по 2 академ. часа;

4.3. Критерии оценки:

	Оценка	Критерии
5	«ОТЛИЧНО»»	Студент глубоко и полно овладел содержанием учебного
		материала, умеет связывать теорию с практикой, решать
		практические задачи, высказывать и обосновывать свои
		суждения. Грамотно, логично излагает ответа, как в устной, так
		и в письменной форме, качественное внешнее оформление.
4	«хорошо»	Студент полно освоил учебный материал в полном объеме,
		владеет понятийным аппаратом, ориентируется в изученном
		материале, осознанно применяет знания для решения
		практических задач, грамотно излагает ответ, в содержании и
		форме ответа имеются отдельные неточности.
3	«удовлетворительно»	Студент имеет разрозненные, бессистемные знания, не умеет
		выделять главное и второстепенное, неполно,
		непоследовательно излагает материал, допускает неточности в
		определении понятий, в применении знаний для решения
		практических задач, не умеет доказательно обосновать свои
		суждения.
2	«неудовлетворительно»	Студент имеет разрозненные, бессистемные знания, не умеет
		выделять главное и второстепенное, допускает ошибки в
		определении понятий, искажает их смысл, беспорядочно и
		неуверенно излагает материал, не умеет применять знания к
		решению практических задач.

5 Пакет преподавателя Условия:

- а) Вид и форма дифференцированного зачёта: компьютерное тестирование
- б) Количество заданий для студента:
- тесты по темам;
- в) Проверяемые результаты обучения и критерии оценок:

Ключи к тестам:

Тема 1.1 и 1.2

№ вопроса	1	2	3	4	5	6	7	8	9	10	11	12
Правильный ответ Вариант 1	A	Б	В	Γ	A	В	В	Γ	A	Б	В	Γ
Вариант 2	Б	В	Γ	A	Б	В	Γ	Γ	Б	A	В	A

Тема 2.1

Nº	1	2	3	4	5	6	7	8	9	10
вопроса										
Правильный										
ответ	Α	Б	В	Γ	Α	Б	A	Б	В	A
Вариант 1										
Вариант 2	Б	В	Γ	A	Б	В	A	Б	В	Γ

Тема 2.2

№ вопроса	1	2	3	4	5	6	7	8	9	10	11	12
Правильный												
ответ	В	Α	Б	Γ	В	Б	Α	Α	В	Γ	В	Γ
Вариант 1												

Тема 3.1 и 3.2

1 CM4 511												
№ вопроса	1	2	3	4	5	6	7	8	9	10	11	12
Правильный ответ Вариант 1	Б	Γ	В	Γ	A	Б	В	Б	A	Б	В	A
Вариант 2	В	Γ	A	Γ	Б	Γ	В	В	Γ	A	Б	A

Тема 3.3

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
вопроса	•	_		-		Ů	,	Ů		10													ì		
Правиль-												_			_			_	_				_	_	
ный ответ	В	Б	Б	Б	В	Б	A	Б	Б	A	Α	Б	Б	В	A	Б	В	A	Б	Γ	В	Б	В	A	Б
Вариант 1																									
Вариант 2	A	A	В	Γ	A	Б	В	В	A	Б	A	Б	A	A	В	A	В	Б	В	Б	Б	Б	В	В	В
Вариант 3	A	Б	A	Г	Б	В	В	В	Б	A	A	Б	Б	В	A	A	A	A	Б	Б	Б	Б	A	A	Б
Вариант 4	Б	Б	В	Б	Γ	Б	A	В	Б	Б	A	Б	A	Б	В	В	A	A	A	A	A	Б	Б	Б	Б

Тема 6.6

1 CMu 0.0										
№ вопроса	1	2	3	4	5	6	7	8	9	10
Правильный ответ Вариант 1	A	Б	A	A	Б	A	Γ	В	Б	Б
Вариант 2	Б	A	A	A	Б	Б	Б	A	A	Б
Вариант 3	A	В	Б	В	Γ	A	Γ	A	Γ	Г
Вариант 4	A	Γ	A	Б	A	Γ	A	A	A	Г

Критерии оценки:

3.2.Время на выполнение:

– 1 минута на 1 задание;

3.3. Критерии оценки

	Оценка	Критерии: правильно выполненные задания
5	«отлично»»	от 85% до 100%
4	«хорошо»	от 75% до 85%
3	«удовлетворительно»	от 61% до 75%
2	«неудовлетворительно»	до 61%

д) Оборудование, разрешённое для выполнения заданий:

- компьютеры;
- тестовая программа.

д) Литература для студента:

Список использованных источников

Основные источники:

1. Курс лекций по дисциплине «Строительные материалы и изделия» - Саратов, 2019. 114с. **Составители**: Мулдашева Г.К. преподаватель высшей квалификационной категории Филиала СамГУПС в г.Саратове, Столбушкин В.А.,к.т.н.,преподаватель Филиала СамГУПС в г. Саратове

Дополнительные источники:

- 1. Щербаченко В.И. Строительство и реконструкция железных дорог: учебник, 2118 315с. ISBN 978 5 906 -938 74 9
- 2. Копыленко В.А. Изыскания и проектирование железных дорог: учебник, Москва : $\Phi \Gamma Б У Д \Pi O У M Ц, 2017 573 c.$
- 3. Танеева Т.А. ПМ 02 Строительство железных дорог, ремонт и текущее содержание железнодорожного пути. Методическое пособие Москва: ФГБУ ДПО УМЦ, 2018 128с.
- 4.Крейнис З.Л. Техническое обследование и ремонт железнодорожного пути Москва: ФГБУ ДПО УМЦ, 2019 453с.
- 5. Строительно-технические нормы МПС РФ. Железные дороги колеи 1520 мм / СТН Ц-01-95.
- 6.СНиП 82-01–95. Разработка и применение норм и нормативов расхода материальных ресурсов в строительстве. Основные положения.
- 7.ГОСТ 10629–88 (с попр. от 1990 г.) Шпалы железобетонные, предварительно напряженные, для железных дорог колеи 1520 мм. Технические условия.

Электронно-образовательные ресурсы:

Электронные учебники, программы, учебные фильмы

- 1.Получение стали и чугуна [Учебный фильм]. 1 эл. опт. диск (CD-ROM).
- 2. Рельсы. [Учебный фильм]. 1 эл. опт. диск (CD-ROM).
- 3. Получение алюминия. [Учебный фильм]. 1 эл. опт. диск (CD-ROM).
- 4.Электронно-библиотечная система «Издательства «Лань».[Электронный ресурс]: СПб., 2010 Режим доступа: http:// <u>www.e/lanbook.com</u>
- 5.ООО Научная электронная библиотека [Электронный ресурс]: М., 2010- 2015 Режим доступа: http://www.elibrary.ru
- 6.ООО «Электронное издательство Юрайт» [Электронный ресурс]: М., 2010- 2015 Режим доступа: http://www.biblio-online.ru

Интернет – ресурсы:

- 1. При организации дистанционного обучения используются электронные платформы: Zoom, Moodle (режим доступа: сайт СТЖТ https://sdo.stgt.site/)
- 2. Единая коллекция цифровых образовательных ресурсов. Режим доступа: http://school-collection.edu.ru , свободный
- 3. Все о материалах и материаловедении. Режим доступа: <u>http:// materiall.ru.</u>
- 4. Сайты тестирования и оценки знаний учащихся. Режим доступа http://www.rostest.runnet.ru
- 5. Электронный курс лекций по материаловедению. Режим доступа http://school-collection.edu.ru
- 6. Сайты «Творческие мастерские». Режим доступа http://www.journal.edusite.ru
- 7. Виртуальные журналы по материаловедению. Режим доступа www. nait.ru