и МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИІ

ФИО: Чирикова Лилия Ивановно ЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Должность: Директор-фермленое государственное бюджетное образовательное учреждение высшего образования

Дата подписти МАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

750e77999bb0631a45cbf7b4a579c1095bcef032814fee919138f(Camayfic)

Филиал СамГУНС в г. Саратове

УТВЕРЖДАЮ

Директор филиала

СамГУПС вт. Саратове

/Чирикова Л.И./

2020 г.

Б1.В.08

Техническая диагностика вагонов

рабочая программа дисциплины (модуля)

Кафедра Инженерные, гуманитарные, естественнонаучные и

общепрофессиональные дисциплины

Специальность 23.05.03 Подвижной состав железных дорог

Грузовые вагоны Специализация

Квалификация Инженер путей сообщения

Форма обучения Заочная

Объем дисциплины **63ET**

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- 1.1 Цели освоения дисциплины (модуля) формирование у студентов знаний в области физических основ технической диагностики, неразрушающего контроля и методов оценки технического состояния деталей и узлов подвижного состава, гехнологий технического диагностирования.
- 1.2 Задачами дисциплины является освоение обучающимися методов распознавания вида технического состояния объекта в условиях ограниченной информации; изучение средств технического диагностирования, используемых в вагонном хозяйстве; изучение алгоритмов диагностирования, совокупности предписаний и последовательности операций, по проведению диагностирования; получение практических навыков в работе с приборами неразрушающего контроля.

1.3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

ПКС-4. Способен организовывать процесс диагностирования технического состояния вагонов

ПКС-4.1. Знает основные методы неразрушающего контроля; межгосударственные, национальные и Индикатор международные стандарты по неразрушающему контролю (НК); терминологию, применяемую в НК; новейшие разработки в области НК; современного состояния средств контроля и технологий механизированного и автоматизированного НК; методы планирования и обработки результатов эксперимента. Организует рабочие места, разрабатывает технологическую инструкцию для выполнения НК конкретным методом; определяет эффективные технологии НК и средства контроля для применения в конкретных условиях. Умеет определять участки контролируемого объекта, которые в наибольшей степени подвержены появлению дефектов, определять методы и объемы НК конкретных контролируемых объектов ПКС-4.2. Знает устройство, принцип действия и функции современных диагностических комплексов по Индикатор оценке технического состояния вагонов и их отдельных узлов, и элементов. Применяет современные информационные технологии при диагностировании объектов

В результате освоения дисциплины обучающийся должен

Знать:

Цели и задачи технической диагностики подвижного состава, физические основы технической диагностики, неразрушающего контроля и методы оценки технического состояния подвижного состава; приборы и методы неразрушающего контроля; средства технической диагностики подвижного состава при его ремонте и движении поезда; принципы технического обслуживания подвижного состава; методы прогнозирования остаточного ресурса подвижного состава.

Уметь:

Составлять математические модели отказов диагностируемых объектов; осуществлять диагностику технического состояния подвижного состава и его узлов при ремонте и движении поезда, а также надзор за его безопасной эксплуатацией; пользоваться средствами неразрушающего контроля, применяемыми для контроля технического состояния подвижного состава.

Владеть:

Опытом использования моделей диагностируемых объектов подвижного состава для выбора информативных признаков; опытом оценки технического состояния ответственных узлов и всего подвижного состава в целом; методами выбора оптимальных и рациональных решений производственных задач; методами диагностирования технического состояния подвижного состава при его ремонте и движении поезда

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Код дисциплины	Наименование дисциплины	Коды формируемых компетенций
	2.1 Осваиваемая дисциплина	
Б1.В.08	Техническая диагностика вагонов	ПКС-4
	2.2 Предшествующие дисциплины	
Б1.О.23	Метрология, стандартизация и сертификация	ОПК-3
Б1.О.24	Основы теории надежности	ОПК-4
	2.3 Осваиваемые параллельно дисциплины	
Б1.В.11	Эксплуатация и техническое обслуживание грузовых вагонов	ПКС-2
	2.4 Последующие дисциплины	_

3. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

ı	3.1 Объем дисциплины (п	модуля)	6 3ET

3.2 Распределение академических часов по семестрам (офо)/курсам(зфо) и видам учебных занятий

		1 (1) (1)												
Вид занятий	№ семестра/курса													
		1	2	2		3	4	4	4	5	•	6	Ито	010
	УП	РПД	УП	РПД	УП	РПД	УП	РПД	УП	РПД	УП	РПД	УП	РПД
Контактная работа:									25	25			25	25

Лекции					8	8		8	8
Лабораторные									
Практические					16	16		16	16
Консультации									
Инд.работа									
Контроль					7,5	7,5		7,5	7,5
Сам. работа					183,2	183,2		183,2	183,2
Итого					216	216		216	216

3.3. Формы контроля и виды самостоятельной работы обучающегося

Форма контроля	Семестр /	Нормы времени на самостоя	тельную работу обучающегося
		Вид работы	Нормы времени, час
		Подготовка к лекциям	0,5 часа на 1 час аудиторных занятий
Экзамен	-	Подготовка к практическим/ лабораторным занятиям	1 час на 1 час аудиторных занятий
Зачет, зачёт с оценкой	5,5	Подготовка к зачету	9 часов
Курсовой проект	-	Выполнение курсового проекта	72 часа
Курсовая работа	-	Выполнение курсовой работы	36 часов
Контрольная работа	5,5	Выполнение контрольной работы	9 часов
РГР		Выполнение РГР	18 часов
Реферат/эссе	-	Выполнение реферата/эссе	9 часов

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

Код	Наименование разделов и	Вид	Семестр /	К-во	Компетен-	Литература	Часы в ин	терактивной
занятия	тем	занятия	_	ак.часов	ции	1 01		рме
							К-во ак.часов	Форма занятия
Pag	вдел 1. Техническая диагності	ика вагон	ов при их і	іроектирон	вании, изгот	овлении, пла	новых видах	ремонта
1.1	Техническая диагностика при проектировании и изготовлении: лабораторные испытания; стендовые испытания; вибрационные испытания.	Лек	5	2	ПКС-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2, Э1, Э3	2	Визуализация
1.2	Динамические испытания: динамические испытания гидравлических гасителей колебаний; динамические испытания автосцепного устройства; динамические испытания рам и кузовов вагонов.	Ср	5	15	ПКС-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2, Э1, Э3		
1.3	Разрушающие методы контроля качества: испытания на растяжение; гидравлические и пневматические испытания узлов вагонов; стендовые испытания узлов и деталей вагонов (автотормозов, тележек)	Ср	5	15	ПКС-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2, Э1, Э3		
1.4	Статистические методы расчета количественных показателей надежности вагонов	Пр	5	2	ПКС-4	M1		
1.5	Методики проведения испытаний подвижного состава	Ср	5	10	ПКС-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2Э1, Э3		
1.6	Испытание деталей и узлов вагонов на растяжение	Пр	5	2	ПКС-4	M1		
	Раздел 2. Изм	перите лы	ные и регис	трирующи	е приборы.	1		
2.1	Преобразователи для измерения механических параметров: преобразователи для измерения перемещений;	Лек	5	2	ПКС-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2, Э1, Э3		

	T -		Ī		ı	ı		
	преобразователи для							
	измерения скорости;							
	преобразователи для							
	измерения ускорений;							
	преобразователи для							
	измерения напряжений							
	давлений, силы;							
	преобразователи для							
	измерения деформаций;							
	Технические средства для				ПКС-4			
	измерения динамических сил				11KC-4	Л1.1, Л1.2		
2.2	1 ' '	C	_	10		Л1.3, Л2.1		
2.2	(динамометры, устройства для	Ср	5	10		Л2.2, Э1,		
	измерения сил трения,					Э3		
	ударных динамических сил).							
	Технические средства				ПКС-4			
	измерения электромагнитных					Л1.1		
	и акустических параметров:					Л1.2		
2.2	магнитопорошковые и	C	_	1.4		Л1.3		
2.3	феррозондовые дефектоскопы,	Ср	5	14		Л2.1		
	контрольные и стандартные					Л2.2		
	образцы; ультразвуковые					Э1		
	технические средства							
	Изучение конструкции и				ПКС-4	 		
2.4	принципа работы	Пр	5	2	11KC-4	M1		
2.4		11p	3	2		IVII		
	преобразователей							
2.5	Испытание деталей и узлов	Пр	5	2	ПКС-4	M1		
2.3	вагонов на растяжение	11p		2		1411		
			10 (еместр				
	Раздел 3. Техническая	я лиягнос			вагонов в ус	повиях эксп	пуатании.	
	Техническая диагностика	диатис	I I I I I I I I I I I I I I I I I I I	п детален	ПКС-4	TOBHIA SKEII		
					11KC-4			
	узлов и деталей вагонов в							
	условиях эксплуатации:							
	диагностирование нагрева							
	букс пассажирских вагонов;							
	комплекс КТСМ-02Д,					Л1.1, Л1.2		
3.1		Лек	5	2		Л1.3, Л2.1		
3.1	"ПАУК"; пост акустического	JICK	3	2		Л2.2, Э1,		
	контроля (ПАК);					Э3		
	автоматическая диагностика							
	колесных пар на ходу поезда							
	(детектор дефектных колес,							
	комплекс КТИ);							
	<u> </u>					1		
Ī	Автоматизированная система				ПКС-4			
	обнаружения вагонов с							
3.2	отрицательной динамикой	Пр	5	2	İ	M1		
Ī	АСООД.	_			İ			
	. 1000д.				1			
	Понятия о показателях и				ПКС-4	†		
					11IXC-4			
	критериях эффективности					H1 1 H1 5		
	диагностирования. Понятие о					Л1.1, Л1.2		
3.3	прогнозировании	Ср	5	15		Л1.3, Л2.1		
] 3.3	технического ресурса	СP		1.5		Л2.2, Э1,		
	подвижного состава по					Э3		
	результатам							
	диагностирования.							
	Методы и аппаратура				ПКС-4	†		
3.4		П.,	5	2	11KC-4	M1		
3.4	вихретокового контроля	Пр]	7	İ	1VI I		
	деталей				<u> </u>	L		
	Раздел 4. Инфрастр	уктура в	агонного хо	зяйства к	ак объект и с	субъект упра	вления.	
	Инфраструктура вагонного							
	хозяйства. Информационная							
Ī	база: Учетные и отчетные				İ	п		
	документы в вагонном				I _	Л1.1, Л1.2		
4.1	хозяйстве; Порядок	Ср	5	15	ПСК-4	Л1.3, Л2.1		
7.1	документального оформления	Ų.		1.5	1	Л2.2, Э1,		
	операций с вагонами при				1	Э3		
					1			
	ремонте и в условиях							
	эксплуатации;				<u>I</u>	I	<u>I</u>	

	Информационные технологии											
4.2	в вагонном хозяйстве. Организация технического обслуживания и ремонта вагонов: виды и периодичность технического обслуживания грузовых и пассажирских вагонов, технология; организация технического обслуживания сборочных единиц вагонов	Ср	5	10	ПСК-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2, Э1, Э3						
4.3	(автотормозов, тележек, колесных пар, ударно-тяговых приборов); Обеспечение безопасной	Пр	5	2	ПСК-4	M1						
1.5	эксплуатации вагонов.	117	,			1411						
4.4	Вагонное хозяйство как объект управления: организационная структура управления вагонным хозяйством; функции и методы управления: информационные, математические и др	Ср	5	13,2	ПСК-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2, Э1, Э3						
	Раздел 5. Неразрушающий контроль											
5.1	Принципы неразрушающего контроля. Магнитный, Ультразвуковой, Феррозондовый и Вихретоковый метод контроля.	Лек	5	2	ПСК-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2, Э1, Э3						
5.2	Разработка алгоритмов диагностирования узлов вагонов и локомотивов	Пр	5	2	ПСК-4	M1						
5.3	Виброакустические методы контроля узлов подвижного состава	Ср	5	10	ПСК-4	Л1.1, Л1.2 Л1.3, Л2.1 Л2.2, Э1, Э3						
		Разд	ел 6. Самос	тоятельна								
6.1	Подготовка к лекциям	Ср	5	4	ПКС-4	л1.1, Э1						
	<u> </u>				THE A							
6.2	Подготовка к практическим занятиям	Ср	5	16	ПКС-4	Л1.1, Э2,Э3						
6.2		Ср	5	16	ПКС-4	Л1.1, Э2,Э3 Л1.1, Л2.1 М2						

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО дисциплине (модулю)

5.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Текущий контроль проводится:

- в форме опроса по темам практических работ;
 в форме опроса по темам лабораторных работ;
- в форме выполнения тестового задания;
- в форме защиты курсовой работы;

Матрица от	ценки результато	ов обучения по	дисциплине

	натрица оценки результатов обу тения по днециилине										
Код	Дескрипторы	Оценочные средства/формы контроля									
		Опрос по практической работе	Опрос по кантрольной работе	Тест	Зачет	Зачет с оценкой					
ПКС-4	знает	+	+	+	+	+					
	умеет	+	+		+	+					

Бладеет Т Т Т		владеет	+	+		+	+
---------------	--	---------	---	---	--	---	---

5.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии формирования оценок по практическим работам

«Отлично» (5 баллов) — обучающийся показал глубокие знания материала по поставленным вопросам, грамотно, логично его излагает, структурировал и детализировал информацию.

«Хорошо» (4 балла) – обучающийся твердо знает материал, грамотно его излагает, не допускает существенных неточностей в ответ на вопросы.

«Удовлетворительно» (3 балла) – обучающийся имеет знания основного материала по поставленным вопросам, но не усвоил его деталей, допускает отдельные неточности.

«Неудовлетворительно» (0 баллов) – обучающийся допускает грубые ошибки в ответе на поставленные вопросы, демонстрирует отсутствие необходимой информации в презентации.

Критерии формирования оценок по выполнению тестовых заданий

«**Отлично**» (5 баллов) – получают обучающиеся с правильным количеством ответов на тестовые вопросы – 100 – 90% от общего объёма заданных тестовых вопросов.

«Хорошо» (4 балла) – получают обучающиеся с правильным количеством ответов на тестовые вопросы – 89 – 70% от общего объёма заданных тестовых вопросов.

«Удовлетворительно» (3 балла) – получают обучающиеся с правильным количеством ответов на тестовые вопросы – 69 – 60% от общего объёма заданных тестовых вопросов.

«**Неудовлетворительно**» (0 баллов) - получают обучающиеся с правильным количеством ответов на тестовые вопросы - 59% и менее от общего объёма заданных тестовых вопросов.

Критерии формирования оценок по выполнению контрольных работ

«Отлично» (5 баллов) – ставится за работу, выполненную полностью без ошибок и недочетов.

«**Хорошо**» (4 балла) – ставится за работу, выполненную полностью, но при наличии в ней не более одной ошибки и одного недочета, или не более трех недочетов.

«Удовлетворительно» (3 балла) – ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы.

«Неудовлетворительно» (0 баллов) – ставится за работу, если число ошибок и недочетов превысило норму для оценки «3» или правильно выполнено менее 2/3 всей работы

Критерии формирования оценок по зачету

«Зачтено» - обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности.

«Не зачтено» - выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У экзаменуемого слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки

Критерии формирования оценок по зачету с оценкой

«Отлично» (5 баллов) – обучающийся демонстрирует знание всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; умение излагать программный материал с демонстрацией конкретных примеров. Свободное владение материалом должно характеризоваться логической ясностью и четким видением путей применения полученных знаний в практической деятельности, умением связать материал с другими отраслями знания.

«Хорошо» (4 балла) — обучающийся демонстрирует знания всех разделов изучаемой дисциплины: содержание базовых понятий и фундаментальных проблем; приобрел необходимые умения и навыки, освоил вопросы практического применения полученных знаний, не допустил фактических ошибок при ответе, достаточно последовательно и логично излагает теоретический материал, допуская лишь незначительные нарушения последовательности изложения и некоторые неточности. Таким образом данная оценка выставляется за правильный, но недостаточно полный ответ.

«Удовлетворительно» (3 балла) – обучающийся демонстрирует знание основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. Однако знание основных проблем курса не подкрепляются конкретными практическими примерами, не полностью раскрыта сущность вопросов, ответ недостаточно логичен и не всегда последователен, допущены ошибки и неточности.

«Неудовлетворительно» (0 баллов) — выставляется в том случае, когда обучающийся демонстрирует фрагментарные знания основных разделов программы изучаемого курса: его базовых понятий и фундаментальных проблем. У обучающегося слабо выражена способность к самостоятельному аналитическому мышлению, имеются затруднения в изложении материала, отсутствуют необходимые умения и навыки, допущены грубые ошибки и незнание терминологии, отказ отвечать на дополнительные вопросы, знание которых необходимо для получения положительной оценки.

5.3Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности

Примеры тестовых заданий:

- 1. Применение поточного метода ремонта автосцепки обосновано при
- ремонте автосцепок пассажирских вагонов
- ремонте более 20 автосцепок в смену
- ремонте менее 20 автосцепок в смену
- ремонте автосцепок модели CA-3M
- 2. Дефектоскопирование тягового хомута производится ... методом.
- феррозондовым
- магнитопорошковым
- вихретоковым
- ультразвуковым
- 3. Стенд для дефектоскопирования тягового хомута должен обеспечивать возможность поворота детали на ... градусов вокруг оси.
- 360
- 90
- 120
- 180

4. Методы, используемые для дефектоскопирования корпуса автосцепки:

- феррозондовый
- магнитопорошковый
- вихретоковый
- ультразвуковой

5. Износы клина тягового хомута допускается восстанавливать

- наплавкой с последующей механообработкой
- осаживанием в матрице с последующей термообработкой
- шлифовкой под ремонтный размер
- приваркой планок

Для зачета

- 1. Назовите основные физические параметры диагностирования.
- 2. Чем определяется чувствительность преобразователя?
- 3. Как определить коэффициент чувствительности тензодатчика?
- 4. На чем основан принцип работы индукционного преобразователя?
- 5. Какие параметры изменяются в емкостном преобразователе? 11
- 6. Чем определяется напряжение на выходе емкостного преобразователя?
- 7. Что такое прямой и обратный пьезоэффект?
- 8. Опишите эффект Холла.
- 9. Приведите примеры использования в вагонном хозяйстве интегрального метода свободных колебаний.
- 10. В чем заключается принцип работы линейного дифференциального трансформатора?
- 11. Как зависит затухание звуковых колебаний от их частоты?
- 12. Приведите примеры использования в вагонном хозяйстве методов виброакустического контроля.
- 13. Почему в дефектоскопии используется ультразвуковой диапазон?
- 14. От чего зависит акустический импеданс?
- 15. Как определить амплитуду отраженной акустической волны?
- 16. Какие виды волн используются в ультразвуковой дефектоскопии?
- 17. Объясните импульсный эхо-метод.
- 18. Дайте определение акустической эмиссии.
- 19. Как распределяется энергия, выделяемая при росте трещины?
- 20. В чем различие между потоком излучения и световым потоком?
- 21. Дайте определение основным фотометрическим величинам.
- 22. Какими свойствами обладает излучение лазера?
- 23. На чем основан принцип работы фотоэлемента?
- 24. На чем основан принцип работы фотоумножителя?
- 25. Назовите полупроводниковые приемники излучения.
- 26. Какие преимущества имеет фототиристор?
- 27. Опишите принцип работы оптрона.
- 28. Какова область применения закрытых оптронов?
- 29. В чем особенности конструкции оптопар открытого типа?
- 30. Каковы технические характеристики многоэлементных приемников излучения?
- 31. В чем заключается метод триангуляции?
- 32. Опишите устройство болометра, почему в болометре применена германиевая линза?
- 30. Принцип работы ТЭД постоянного тока.
- 31. Особенности конструкции ЭД-118А.
- 32. Какие средства технического диагностирования, применяеются в процессе

ремонта грузового подвижного состава.

- 33. Акустические (звуковые) методы контроля и диагностирования, применяемые в вагонном хозяйстве.
- 34. Оптические методы, используемые при контроле подвижного состава.
- 35. Методы измерения напряжений, датчики давления.

- 36. Устройство и принцип работы вихретокового преобразователя.
- 37. Примеры использования виброакустической энергии при контроле технического состояния подвижного состава и его узлов
- 38. Применение ультразвука при дефектоскопии вагонных деталей.
- 39. Диагностические признаки отказов автосцепного устройства подвижного состава.
- 40. Диагностические признаки отказов упряжного устройства.
- 41. АДУ, принцип работы, используемые диагностические признаки.
- 42. Диагностические признаки отказов автотормозной системы подвижного состава.
- 43. Какие средства технического диагностирования, применяются в условиях эксплуатации грузового подвижного состава.

Для зачета с оценкой

- 1. Диагностический признак диагностическая ценность признака.
- 2. Метод акустической эмиссии и его применения в вагонном хозяйстве.
- 3. Средства технического диагностирования, применяемые в условиях эксплуатации грузового подвижного состава.
- 4. Структура технического диагностирования.
- 5. Оптические методы, используемые при контроле подвижного состава.
- 6. ДИСК2, состав и назначение подсистем.
- 7. Статистические методы распознавания, пример использования формулы Байеса для распознавания технического состояния буксового подшипника.
- 8. Акустические (звуковые) методы контроля и диагностирования, применяемые в вагонном хозяйстве.
- 9. ДИСК2-БТ, принцип работы, используемые диагностические признаки.
- 10. Методы статистических решений, пример статистического распределения плотности вероятности диагностического параметра для исправного и дефектного состояний объекта на примере обнаружения аварийного состояния подшипника.
- 11. Интегральные диагностические признаки технического состояния ходовых частей подвижного состава.
- 12. ДИСК2-К, принцип работы, используемые диагностические признаки.
- 13. Методы статистических решений, вероятность ложной тревоги, вероятность пропуска дефекта.
- 14. Методы измерения перемещений.
- 15. ДИСК2-В, принцип работы.
- 16.Методы статистических решений, метод среднего риска, метод минимального риска, отношение правдоподобия с примером статистического распределения плотности вероятности диагностического параметра для исправного и дефектного состояний буксового подшипника.
- 17. Диагностические признаки отказов автосцепного устройства подвижного состава.
- 18. ДИСК2-3, принцип работы, используемые диагностические признаки.
- 19. Методы статистических решений, метод Неймана-Пирсона и пример его

использования для выбора порога настройки приборов обнаружения нагретых букс.

- 20. Диагностические признаки отказов упряжного устройства.
- 21. ДИСК2-Э, принцип работы, используемые диагностические признаки.
- 22. Диагностическая информация, определение количества информации.
- 23. Методы измерения напряжений, датчики давления.
- 24.ДИСК2-Г, принцип работы.
- 25. Количество диагностической информации, понятие энтропии, единица измерения энтропии, пример использования информации от нескольких постов контроля температуры букс.
- 26. Информация о состоянии системы, взаимосвязь неисправностей и ее использование при контроле технического состояния подвижного состава.
- 27. АДУ, принцип работы, используемые диагностические признаки.
- 28. Информация о состоянии системы.
- 29. Диагностические признаки отказов автосцепки
- 30. Устройство и принцип работы вихретокового преобразователя, векторная диаграмма.
- 31. Примеры использования виброакустической энергии при контроле технического состояния подвижного состава и его узлов.
- 32. Диагностическая ценность признака.
- 33. Диагностические признаки отказов тележки подвижного состава.
- 34. Подвижной состав, как объект диагностирования, функции, выполняемые упряжным устройством.
- 35. Диагностические признаки отказов колесной пары.
- 36. Применение ультразвука при дефектоскопии вагонных деталей.
- 37. Подвижной состав, как объект диагностирования, функции, выполняемые воздухораспределителем.
- 38. Бортовые устройства контроля технического состояния подвижного состава.
- 39. Применение ультразвуковой техники при дефектоскопии вагонных деталей, какие волны УК колебаний используют.
- 40. Виды отказов подвижного состава, причины производственных и эксплуатационных отказов.
- 41. Магнитные методы дефектоскопии, способы обнаружения магнитного поля, измерения магнитной индукции.
- 42. Устойчивости колесной пары подвижного состава от схода, основные диагностические параметры оценки устойчивости.
- 43. Методы измерения перемещений, силовые преобразователи для измерения давления.
- 44. Магнитные методы дефектоскопии, принцип работы феррозондового дефектоскопа.
- 45. Излучение и регистрация ультразвуковых волн, преобразователи электрических сигналов в механические колебания и обратно.
- 46. Параметр потока отказов, интенсивность отказов подвижного состава, вероятность безостановочного следования поездов.

- 47. Диагностические признаки отказов буксового узла.
- 48. Основные элементы конструкции пьезоэлектрического преобразователя.
- 49. Последствия отказа, классификация нарушений безопасности движения в поездной и маневровой работе на железных дорогах
- 50. Магнитные методы дефектоскопии, способы намагничивания деталей.
- 51. Применение ультразвуковой дефектоскопии вагонных деталей, акустический импеданс, как основа УЗД.
- 52. Причины столкновения поезда с другим поездом или подвижным составом
- по вине вагонного хозяйства, методы предотвращения случаев столкновений.
- 53. Диагностические признаки отказов автотормозной системы подвижного состава.
- 54. Применение ультразвуковой дефектоскопии вагонных деталей, импульсный эхо метод и зеркальный импульсный эхо метол.
- 55. Причины схода подвижного состава на стрелочном переводе из-за нарушений, связанных с техническим состоянием колесных пар, диагностические признаки данных нарушений.
- 56. Устройство и принцип работы вихретокового дефектоскопа.
- 57. Магнитные методы дефектоскопии, понятие градиента напряженности магнитного поля.
- 58. Виды технического состояния объекта на примере грузового подвижного состава.
- 59. Оптические методы, используемые при контроле технического состояния подвижного состава, источники и приемники оптического излучения.
- 60. Средства технической диагностики, применяемые в процессе ремонта.

Темы контрольной работы

- 1. Вероятность обнаружения дефектов буксового подшипника аппаратурой КТСМ-1 по формуле Байеса.
- 2. Вероятность обнаружения дефектов буксового подшипника аппаратурой КТСМ-2Б по формуле Байеса.
- 3. Вероятность обнаружения дефектов колесной пары аппаратурой КТСМ-2К по формуле Байеса.
- 4. Метод минимального риска, расчет отношения правдоподобия.
- 5. Примеры практической реализации метода Неймана-Пирсона.
- 6. Определение количества диагностической информации взаимосвязанных систем подвижного состава.
- 7. Ценность диагностического параметра виброускорение рельса для обнаружения дефектов колес.
- 8. Определение диагностического параметра методом минимального числа ошибочных решений.
- 9. Определение диагностического параметра методом минимакса.
- 10. Определение диагностического параметра методом наибольшего правдоподобия.

5.4 Методические материалы, определяющие процедуры оценивания

Порядок отчета по практическим занятиям.

Оценивание итогов практической работы проводится преподавателем, ведущим практических работы.

По результатам проверки отчета по лабораторной работе обучающийся допускается к его защите при условии соблюдения перечисленных условий:

- выполнены все задания;
- отсутствуют ошибки;
- оформлено в соответствии с требованиями.

В том случае, если содержание отчета не отвечает предъявляемым требованиям, то он возвращается автору на доработку. Обучающийся должен переделать отчет с учетом замечаний. Если сомнения вызывают отдельные аспекты отчета, то в этом случае они рассматриваются во время устной защиты.

Защита отчета по лабораторной работе представляет собой устный публичный отчет обучающегося о результатах выполнения, ответы на вопросы преподавателя.

Ответ обучающегося оценивается преподавателем в соответствии с критериями, описанными в пункте 5.2.

Порядок проведения тестирования.

Тестирование проводится в письменной форме либо на компьютере. Периодичность тестирования определяется освоением разделов дисциплины (модуля). При проведении тестирования обучающемуся предоставляется 20 минут на ответы. После завершения тестирования результаты обрабатываются и сообщаются тестируемому в течение рабочего дня. Если тестирование показало неудовлетворительный уровень освоения компетенции, то оно проводится повторно, но не раньше чем через день после предыдущей попытки. Результат каждого обучающегося оценивается в соответствии с универсальной шкалой, приведенной в пункте 5.2.

Порядок оценивания процедуры защита контрольной работы

Оценивание проводится руководителем контрольной работы. По результатам проверки контрольной работы обучающийся допускается к зачету при условии соблюдения перечисленных условий:

- выполнены все задания;
- сделаны выводы;
- отсутствуют ошибки;
- оформлено в соответствии с требованиями.

В том случае, если работа не отвечает предъявляемым требованиям, то она возвращается автору на доработку. Обучающийся должен переделать работу с учетом замечаний и предоставить для проверки вариант с результатами работы над ошибками. Если сомнения вызывают отдельные аспекты курсовой работы, то в этом случае они рассматриваются во время устной защиты работы.

Порядок проведения зачета.

Зачет проводится в устной форме.

Обучающемуся предоставляется 60 минут на подготовку. Опрос обучающегося по билету не должен превышать 0,25 часа. Ответ обучающегося оценивается в соответствии с критериями, описанными в пункте 5.2.

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

6.1 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)
6.1.1. Основная литература

	Заглавие	Издательство, год	Кол-во
Т	Гехническая диагностика вагонов. Часть 1. Теоретические	Москва: ФГБОУ	ЭБ «УМЦ
0	основы технической диагностики и неразрушающего	«УМЦ ЖДТ», 2013—403 с	ЖДТ»

«УМЦ ЖДТ»,

2014. − 79 c.

ЖДТ»

Криворудченко контроля деталей вагонов: учебник: в 2 ч [электронный pecypc] Криворудченко, В.Ф. Л1.2 Техническая диагностика вагонов. Часть 2. Диагностирование Москва: ФГБОУ ЭБ «УМЦ под ред. В.Ф. узлов и деталей вагонов при изготовлении, ремонте и в «УМЦ ЖДТ», ЖДТ» Криворудченко условиях эксплуатации: учебник: в 2 ч. [электронный ресурс] 2013. − 315 c. Москва: ФГБОУ ЭБ «УМЦ Л1.3 Мазнев, А.С. Комплексы технической диагностики механического

6.1.2 Дополнительная литература

оборудования электрического подвижного состава: учеб.

пособие [электронный ресурс]

	Авторы,	Заглавие	Издательство, год	Кол-во
	составители			
Л2.1	К.А. Сергеев, В.В.	Сергеев К.А. Основы технической диагностики. Техническая	М.: РГОТУПС,	19
	Готаулин	диагностика вагонов: Учебное пособие.	2003133 с.	
Л2.2	Зеленченко, А.П.	Диагностические комплексы электрического подвижного	Москва: ФГБОУ	ЭБ «УМЦ
	Федоров Д.В	состава: учеб. пособие [электронный ресурс]	«УМЦ ЖДТ»,	ЖДТ»
	_		2014. − 112 c.	

6.2 Методические разработки

Авторы,	Заглавие	Издательство, год	Кол-во
составители			
Корбан. В.В., Коркина В.И, Куприянов П.В.	указания к выполнению практических работ для	Самара: СамГУПС, 2016. – 42 с.	в лок.сети вуза

6.3. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"

	Наименование ресурса	Эл.адрес
Э1	Электронные образовательные ресурсы дисциплины	http://do.samgups.ru/moodle/
Э2	Наука и транспорт: периодический журнал	www.rostransport.com
Э3	Сервер "Неразрушающий контроль в России"	http://www.ndt.ru/

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для освоения дисциплины обучающемуся необходимо: систематически посещать лекционные занятия; активно участвовать в обсуждении предложенных вопросов и выполнять практические задания; выполнить курсовую работу; успешно пройти все формы текущего контроля: успешно пройти промежуточную аттестацию (вопросы придагаются п.6.4).

Для подготовки к промежуточной аттестации по дисциплине необходимо использовать: материалы лекций, рекомендуемую основную и дополнительную литературу; ресурсы информационно-телекоммуникационной сети "Интернет»; методические материалы; информационно-образовательную среду университета.

Для теоретического и практического усвоения дисциплины большое значение имеет самостоятельная работа обучающихся, которая может осуществляться как индивидуально, так и под руководством обучающего. Данная работа предполагает самостоятельное изучение обучающимся отдельных тем (см. п.4), дополнительную подготовку к каждому лекционному и практическому занятию.

Самостоятельная работа обучающихся является важной формой образовательного процесса. Она реализуется вне рамок расписания, а также в библиотеке, дома, при выполнении учебных и творческих задач.

Цель самостоятельной работы - научить обучающегося осмысленно и самостоятельно работать сначала с учебным материалом, затем с научной информацией, заложить основы самоорганизации и самовоспитания с тем, чтобы повысить уровень освоения компетенций, а также привить умение в дальнейшем непрерывно повышать свою квалификацию.

8. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИСПОЛЬЗУЕМЫЕ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Размещение учебных материалов в разделе «Электрические передачи локомотивов» системы обучения Moodle: http://do.samgups.ru/moodle/

8.1 Перечень программного обеспечения

Авторы, составители

Криворудченко, В.Ф.

[и др.] под ред. В.Ф.

Федоров Д.В.

Л1.1

8.1.1	Office			
9.2 Пата				
8.2 Перечень информационных справочных систем				
8.2.1	Научная электронная библиотека eLIBRARY.RU - крупнейший российский информационно-аналитический портал в			
	области науки, технологии, медицины и образования. http://elibrary.ru			
8.2.2	Информационная система «Единое окно доступа к образовательным ресурсам» предоставляет свободный доступ к			
	каталогу образовательных интернет-ресурсов и полнотекстовой электронной учебно-методической библиотеке			
8.2.3	ЭБ «УМЦ ЖДТ» режим доступа: https://umczdt.ru/books/			

9. ОПИСАНИЕМАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Лекционная аудитория (50 и более посадочных мест) и аудитория для проведения практических занятий (25 и более посадочных мест) оборудованные учебной мебелью; неограниченный доступ к электронно-библиотечным системам (через ресурсы библиотеки СамГУПС), к электронной информационно-образовательной среде moodle и к информационнотельной работы обучающегося.

Мультимедийное оборудование (проектор, экран, ноутбук).

Плакаты, натурные и макетные узлы тепловозов.